IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v225y2018icp668-681.html
   My bibliography  Save this article

Limiting gaming opportunities on incentive-based demand response programs

Author

Listed:
  • Vuelvas, José
  • Ruiz, Fredy
  • Gruosso, Giambattista

Abstract

Incentive-based demand response is a program where participant users are paid to reduce energy consumption from an established baseline. Counter-factual models to estimate the baselines are vulnerable for gaming. In this paper, a novel demand response contract between a user and an aggregator is developed to induce individual rationality (voluntary participation) and asymptotic incentive-compatibility (truthfulness) through the probability of call, which is the chance of a consumer to be selected by the aggregator to serve as demand response resource at a given period. In this approach, a consumer self-reports his baseline and reduction capacity, given a payment scheme that includes cost of electricity, incentive price, and penalty caused by any deviation between self-reported and actual energy consumption. Another important feature of this approach, different from the classic solutions, is that a participant agent does not require reporting marginal utility (energy preference), and only announces information in terms of energy. A two-stage stochastic programming problem is proposed from the demand side to understand the consumer rational decisions under this contract. As result, the aggregator decides randomly what users are called to perform the energy reduction in order to manage the truth-telling behavior of each agent through the probability of call. Mathematical proofs and numerical studies are provided to demonstrate the properties and advantages of this contract in limiting gaming opportunities and in terms of its implementation.

Suggested Citation

  • Vuelvas, José & Ruiz, Fredy & Gruosso, Giambattista, 2018. "Limiting gaming opportunities on incentive-based demand response programs," Applied Energy, Elsevier, vol. 225(C), pages 668-681.
  • Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:668-681
    DOI: 10.1016/j.apenergy.2018.05.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918307608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diaz, Cesar & Ruiz, Fredy & Patino, Diego, 2017. "Modeling and control of water booster pressure systems as flexible loads for demand response," Applied Energy, Elsevier, vol. 204(C), pages 106-116.
    2. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    3. Hung-po Chao, 2011. "Demand response in wholesale electricity markets: the choice of customer baseline," Journal of Regulatory Economics, Springer, vol. 39(1), pages 68-88, February.
    4. Zhou, Yue & Wang, Chengshan & Wu, Jianzhong & Wang, Jidong & Cheng, Meng & Li, Gen, 2017. "Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market," Applied Energy, Elsevier, vol. 188(C), pages 456-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
    2. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    3. Abedrabboh, Khaled & Al-Fagih, Luluwah, 2023. "Applications of mechanism design in market-based demand-side management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Ziras, Charalampos & Heinrich, Carsten & Bindner, Henrik W., 2021. "Why baselines are not suited for local flexibility markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Vicente Gutiérrez González & Lissette Álvarez Colmenares & Jesús Fernando López Fidalgo & Germán Ramos Ruiz & Carlos Fernández Bandera, 2019. "Uncertainy’s Indices Assessment for Calibrated Energy Models," Energies, MDPI, vol. 12(11), pages 1-18, May.
    6. Ottavia Valentini & Nikoleta Andreadou & Paolo Bertoldi & Alexandre Lucas & Iolanda Saviuc & Evangelos Kotsakis, 2022. "Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load," Energies, MDPI, vol. 15(14), pages 1-36, July.
    7. Ramos, Dorel Soares & Del Carpio Huayllas, Tesoro Elena & Morozowski Filho, Marciano & Tolmasquim, Mauricio Tiomno, 2020. "New commercial arrangements and business models in electricity distribution systems: The case of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Xu, Fangyuan & Wu, Wanli & Zhao, Fei & Zhou, Ya & Wang, Yongjian & Wu, Runji & Zhang, Tao & Wen, Yongchen & Fan, Yiliang & Jiang, Shengli, 2019. "A micro-market module design for university demand-side management using self-crossover genetic algorithms," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    10. Khaled Abedrabboh & Luluwah Al-Fagih, 2021. "Applications of Mechanism Design in Market-Based Demand-Side Management," Papers 2106.14659, arXiv.org.
    11. Pedro Nel Ovalle & José Vuelvas & Arturo Fajardo & Carlos Adrián Correa-Flórez & Fredy Ruiz, 2021. "Optimal Portfolio Selection Methodology for a Demand Response Aggregator," Energies, MDPI, vol. 14(23), pages 1-24, November.
    12. Cesar Diaz-Londono & José Vuelvas & Giambattista Gruosso & Carlos Adrian Correa-Florez, 2022. "Remuneration Sensitivity Analysis in Prosumer and Aggregator Strategies by Controlling Electric Vehicle Chargers," Energies, MDPI, vol. 15(19), pages 1-24, September.
    13. Konstantakopoulos, Ioannis C. & Barkan, Andrew R. & He, Shiying & Veeravalli, Tanya & Liu, Huihan & Spanos, Costas, 2019. "A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure," Applied Energy, Elsevier, vol. 237(C), pages 810-821.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    2. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    3. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
    4. Vinicius Braga Ferreira da Costa & Gabriel Nasser Doyle de Doile & Gustavo Troiano & Bruno Henriques Dias & Benedito Donizeti Bonatto & Tiago Soares & Walmir de Freitas Filho, 2022. "Electricity Markets in the Context of Distributed Energy Resources and Demand Response Programs: Main Developments and Challenges Based on a Systematic Literature Review," Energies, MDPI, vol. 15(20), pages 1-43, October.
    5. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    6. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    7. Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
    8. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    9. Diaz, Cesar & Ruiz, Fredy & Patino, Diego, 2017. "Modeling and control of water booster pressure systems as flexible loads for demand response," Applied Energy, Elsevier, vol. 204(C), pages 106-116.
    10. Raman, Gururaghav & Zhao, Bo & Peng, Jimmy Chih-Hsien & Weidlich, Matthias, 2022. "Adaptive incentive-based demand response with distributed non-compliance assessment," Applied Energy, Elsevier, vol. 326(C).
    11. Ren'e Aid & Dylan Possamai & Nizar Touzi, 2018. "Optimal electricity demand response contracting with responsiveness incentives," Papers 1810.09063, arXiv.org, revised May 2019.
    12. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    13. Khan, Muhammad T. & Thopil, George Alex & Lalk, Jorg, 2016. "Review of proposals for practical power sector restructuring and reforms in a dynamic electricity supply industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 326-335.
    14. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    15. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    16. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    17. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    18. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    19. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    20. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:668-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.