Assessment of energy flows and energy efficiencies in integrated catalytic adsorption steam gasification for hydrogen production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.05.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liszka, Marcin & Malik, Tomasz & Manfrida, Giampaolo, 2012. "Energy and exergy analysis of hydrogen-oriented coal gasification with CO2 capture," Energy, Elsevier, vol. 45(1), pages 142-150.
- Hafizi, A. & Rahimpour, M.R. & Hassanajili, S., 2016. "High purity hydrogen production via sorption enhanced chemical looping reforming: Application of 22Fe2O3/MgAl2O4 and 22Fe2O3/Al2O3 as oxygen carriers and cerium promoted CaO as CO2 sorbent," Applied Energy, Elsevier, vol. 169(C), pages 629-641.
- Taheri, M.H. & Mosaffa, A.H. & Farshi, L. Garousi, 2017. "Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle," Energy, Elsevier, vol. 125(C), pages 162-177.
- Kelly-Yong, Tau Len & Lee, Keat Teong & Mohamed, Abdul Rahman & Bhatia, Subhash, 2007. "Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide," Energy Policy, Elsevier, vol. 35(11), pages 5692-5701, November.
- Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
- Galanti, Leandro & Franzoni, Alessandro & Traverso, Alberto & Massardo, Aristide F., 2011. "Existing large steam power plant upgraded for hydrogen production," Applied Energy, Elsevier, vol. 88(5), pages 1510-1518, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
- José Juan Alvarado-Flores & Jorge Víctor Alcaraz-Vera & María Liliana Ávalos-Rodríguez & Erandini Guzmán-Mejía & José Guadalupe Rutiaga-Quiñones & Luís Fernando Pintor-Ibarra & Santiago José Guevara-M, 2024. "Thermochemical Production of Hydrogen from Biomass: Pyrolysis and Gasification," Energies, MDPI, vol. 17(2), pages 1-21, January.
- Yan, Xianyao & Li, Yingjie & Sun, Chaoying & Zhang, Chunxiao & Yang, Liguo & Fan, Xiaoxu & Chu, Leizhe, 2022. "Enhanced H2 production from steam gasification of biomass by red mud-doped Ca-Al-Ce bi-functional material," Applied Energy, Elsevier, vol. 312(C).
- Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Živković, Luka A. & Pohar, Andrej & Likozar, Blaž & Nikačević, Nikola M., 2016. "Kinetics and reactor modeling for CaO sorption-enhanced high-temperature water–gas shift (SE–WGS) reaction for hydrogen production," Applied Energy, Elsevier, vol. 178(C), pages 844-855.
- Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
- Shi, Jiewen & Li, Yingjie & Zhang, Qing & Ma, Xiaotong & Duan, Lunbo & Zhou, Xingang, 2017. "CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions," Applied Energy, Elsevier, vol. 203(C), pages 412-421.
- Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
- Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
- Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
- Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
- Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
- Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
- Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
- Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
- Rivarolo, M. & Magistri, L. & Massardo, A.F., 2014. "Hydrogen and methane generation from large hydraulic plant: Thermo-economic multi-level time-dependent optimization," Applied Energy, Elsevier, vol. 113(C), pages 1737-1745.
- Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
- Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
- Halliday, Cameron & Hatton, T. Alan, 2020. "The potential of molten metal oxide sorbents for carbon capture at high temperature: Conceptual design," Applied Energy, Elsevier, vol. 280(C).
- Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
- Akbari-Emadabadi, S. & Rahimpour, M.R. & Hafizi, A. & Keshavarz, P., 2017. "Production of hydrogen-rich syngas using Zr modified Ca-Co bifunctional catalyst-sorbent in chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 206(C), pages 51-62.
- Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
- Fan, Jing-Li & Yu, Pengwei & Li, Kai & Xu, Mao & Zhang, Xian, 2022. "A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China," Energy, Elsevier, vol. 242(C).
- Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
More about this item
Keywords
Energy flow; Energy efficiency; Hydrogen; Fluidized bed; Integrated; Steam gasification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:346-355. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.