IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v216y2018icp534-557.html
   My bibliography  Save this article

Methods for planning of ATES systems

Author

Listed:
  • Bloemendal, Martin
  • Jaxa-Rozen, Marc
  • Olsthoorn, Theo

Abstract

Aquifer Thermal Energy Storage (ATES) systems contribute to reducing fossil energy consumption by providing sustainable space heating and cooling for buildings by seasonal storage of heat. ATES is important for the energy transition in many urban areas in North America, Europe and Asia. Despite the modest current ATES adoption level of about 0.2% of all buildings in the Netherlands, ATES subsurface space use has already grown to congestion levels in many Dutch urban areas. This problem is to a large extent caused by the current planning and permitting approach, which uses too spacious safety margins between wells and a 2D rather than 3D perspective. The current methods for permitting and planning of ATES do not lead to optimal use of available subsurface space, and, therefore, prevent realization of the expected contribution of the reduction of greenhouse gas (GHG) emissions by ATES.

Suggested Citation

  • Bloemendal, Martin & Jaxa-Rozen, Marc & Olsthoorn, Theo, 2018. "Methods for planning of ATES systems," Applied Energy, Elsevier, vol. 216(C), pages 534-557.
  • Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:534-557
    DOI: 10.1016/j.apenergy.2018.02.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kranz, Stefan & Frick, Stephanie, 2013. "Efficient cooling energy supply with aquifer thermal energy storages," Applied Energy, Elsevier, vol. 109(C), pages 321-327.
    2. Alibabaei, Nima & Fung, Alan S. & Raahemifar, Kaamran & Moghimi, Arash, 2017. "Effects of intelligent strategy planning models on residential HVAC system energy demand and cost during the heating and cooling seasons," Applied Energy, Elsevier, vol. 185(P1), pages 29-43.
    3. Kwakkel, Jan H. & Pruyt, Erik, 2013. "Exploratory Modeling and Analysis, an approach for model-based foresight under deep uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 419-431.
    4. Bloemendal, Martin & Olsthoorn, Theo & Boons, Frank, 2014. "How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage," Energy Policy, Elsevier, vol. 66(C), pages 104-114.
    5. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J. & Martín, F., 2016. "Optimal planning and operation of aggregated distributed energy resources with market participation," Applied Energy, Elsevier, vol. 182(C), pages 340-357.
    6. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    7. Willems, Cees J.L. & Nick, Hamidreza M. & Weltje, Gert Jan & Bruhn, David F., 2017. "An evaluation of interferences in heat production from low enthalpy geothermal doublets systems," Energy, Elsevier, vol. 135(C), pages 500-512.
    8. Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
    9. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    10. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    11. Guo, Chaobin & Zhang, Keni & Pan, Lehua & Cai, Zuansi & Li, Cai & Li, Yi, 2017. "Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 203(C), pages 948-958.
    12. Procesi, M. & Cantucci, B. & Buttinelli, M. & Armezzani, G. & Quattrocchi, F. & Boschi, E., 2013. "Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy)," Applied Energy, Elsevier, vol. 110(C), pages 104-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stemmle, Ruben & Blum, Philipp & Schüppler, Simon & Fleuchaus, Paul & Limoges, Melissa & Bayer, Peter & Menberg, Kathrin, 2021. "Environmental impacts of aquifer thermal energy storage (ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Jewon Oh & Daisuke Sumiyoshi & Masatoshi Nishioka & Hyunbae Kim, 2021. "Efficient Operation Method of Aquifer Thermal Energy Storage System Using Demand Response," Energies, MDPI, vol. 14(11), pages 1-18, May.
    3. Lu, Hongwei & Tian, Peipei & Guan, Yanlong & Yu, Sen, 2019. "Integrated suitability, vulnerability and sustainability indicators for assessing the global potential of aquifer thermal energy storage," Applied Energy, Elsevier, vol. 239(C), pages 747-756.
    4. Rostampour, Vahab & Jaxa-Rozen, Marc & Bloemendal, Martin & Kwakkel, Jan & Keviczky, Tamás, 2019. "Aquifer Thermal Energy Storage (ATES) smart grids: Large-scale seasonal energy storage as a distributed energy management solution," Applied Energy, Elsevier, vol. 242(C), pages 624-639.
    5. Fouladvand, Javanshir, 2022. "Behavioural attributes towards collective energy security in thermal energy communities: Environmental-friendly behaviour matters," Energy, Elsevier, vol. 261(PB).
    6. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    7. Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
    8. Schüppler, Simon & Fleuchaus, Paul & Duchesne, Antoine & Blum, Philipp, 2022. "Cooling supply costs of a university campus," Energy, Elsevier, vol. 249(C).
    9. Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
    10. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    11. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    12. Nava-Guerrero, Graciela-del-Carmen & Hansen, Helle Hvid & Korevaar, Gijsbert & Lukszo, Zofia, 2022. "An agent-based exploration of the effect of multi-criteria decisions on complex socio-technical heat transitions," Applied Energy, Elsevier, vol. 306(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    2. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    3. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    5. Jewon Oh & Daisuke Sumiyoshi & Masatoshi Nishioka & Hyunbae Kim, 2021. "Efficient Operation Method of Aquifer Thermal Energy Storage System Using Demand Response," Energies, MDPI, vol. 14(11), pages 1-18, May.
    6. Lu, Hongwei & Tian, Peipei & He, Li, 2019. "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 788-796.
    7. Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
    8. De Schepper, Guillaume & Paulus, Claire & Bolly, Pierre-Yves & Hermans, Thomas & Lesparre, Nolwenn & Robert, Tanguy, 2019. "Assessment of short-term aquifer thermal energy storage for demand-side management perspectives: Experimental and numerical developments," Applied Energy, Elsevier, vol. 242(C), pages 534-546.
    9. Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
    10. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    11. Wu, Qiang & Tu, Kun & Sun, Haizhou & Chen, Chaofan, 2019. "Investigation on the sustainability and efficiency of single-well circulation (SWC) groundwater heat pump systems," Renewable Energy, Elsevier, vol. 130(C), pages 656-666.
    12. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    13. Bozkaya, Basar & Zeiler, Wim, 2020. "The energy efficient use of an air handling unit for balancing an aquifer thermal energy storage system," Renewable Energy, Elsevier, vol. 146(C), pages 1932-1942.
    14. Li, Shuang & Wang, Gaosheng & Zhou, Mengmeng & Song, Xianzhi & Shi, Yu & Yi, Junlin & Zhao, Jialin & Zhou, Yifan, 2024. "Thermal performance of an aquifer thermal energy storage system: Insights from novel multilateral wells," Energy, Elsevier, vol. 294(C).
    15. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Rostampour, Vahab & Jaxa-Rozen, Marc & Bloemendal, Martin & Kwakkel, Jan & Keviczky, Tamás, 2019. "Aquifer Thermal Energy Storage (ATES) smart grids: Large-scale seasonal energy storage as a distributed energy management solution," Applied Energy, Elsevier, vol. 242(C), pages 624-639.
    17. Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
    18. Daniilidis, Alexandros & Mindel, Julian E. & De Oliveira Filho, Fleury & Guglielmetti, Luca, 2022. "Techno-economic assessment and operational CO2 emissions of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) using demand-driven and subsurface-constrained dimensioning," Energy, Elsevier, vol. 249(C).
    19. Cassina, Lisa & Laloui, Lyesse & Rotta Loria, Alessandro F., 2022. "Thermal interactions among vertical geothermal borehole fields," Renewable Energy, Elsevier, vol. 194(C), pages 1204-1220.
    20. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:216:y:2018:i:c:p:534-557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.