IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i9p1517-1531.html
   My bibliography  Save this article

Solar radiation modeling and measurements for renewable energy applications: data and model quality

Author

Listed:
  • Myers, Daryl R.

Abstract

Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data.

Suggested Citation

  • Myers, Daryl R., 2005. "Solar radiation modeling and measurements for renewable energy applications: data and model quality," Energy, Elsevier, vol. 30(9), pages 1517-1531.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:9:p:1517-1531
    DOI: 10.1016/j.energy.2004.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204002269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behrang, M.A. & Assareh, E. & Noghrehabadi, A.R. & Ghanbarzadeh, A., 2011. "New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique," Energy, Elsevier, vol. 36(5), pages 3036-3049.
    2. Munawwar, Saima & Muneer, Tariq, 2007. "Statistical approach to the proposition and validation of daily diffuse irradiation models," Applied Energy, Elsevier, vol. 84(4), pages 455-475, April.
    3. Chen, Chenshun & Duan, Qiuhua & Feng, Yanxiao & Wang, Julian & Ghaeili Ardabili, Neda & Wang, Nan & Hosseini, Seyed Morteza & Shen, Chao, 2023. "Reconstruction of narrowband solar radiation for enhanced spectral selectivity in building-integrated solar energy simulations," Renewable Energy, Elsevier, vol. 219(P2).
    4. Muneer, T. & Younes, S. & Munawwar, S., 2007. "Discourses on solar radiation modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 551-602, May.
    5. Dario Fusai & Alessandro Soldati & Davide Lusignani & Paolo Santarelli & Paolo Patroncini, 2021. "Model-Based Design of a Pseudo-Cogenerative Heating System for e-Boat Battery Cold Start," Energies, MDPI, vol. 14(4), pages 1-26, February.
    6. Hyun-Jin Lee & Shin-Young Kim & Chang-Yeol Yun, 2017. "Comparison of Solar Radiation Models to Estimate Direct Normal Irradiance for Korea," Energies, MDPI, vol. 10(5), pages 1-12, April.
    7. Batman, Alp & Bagriyanik, F. Gul & Aygen, Z. Elif & Gül, Ömer & Bagriyanik, Mustafa, 2012. "A feasibility study of grid-connected photovoltaic systems in Istanbul, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5678-5686.
    8. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    9. GhaffarianHoseini, AmirHosein & Dahlan, Nur Dalilah & Berardi, Umberto & GhaffarianHoseini, Ali & Makaremi, Nastaran & GhaffarianHoseini, Mahdiar, 2013. "Sustainable energy performances of green buildings: A review of current theories, implementations and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 1-17.
    10. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    11. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    12. Prieto, Jesús-Ignacio & García, David, 2022. "Global solar radiation models: A critical review from the point of view of homogeneity and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Buffat, René & Grassi, Stefano & Raubal, Martin, 2018. "A scalable method for estimating rooftop solar irradiation potential over large regions," Applied Energy, Elsevier, vol. 216(C), pages 389-401.
    14. Qi-Xun Zhang & Hai-Ye Yu & Qiu-Yuan Zhang & Zhong-Yuan Zhang & Cheng-Hui Shao & Di Yang, 2015. "A Solar Automatic Tracking System that Generates Power for Lighting Greenhouses," Energies, MDPI, vol. 8(7), pages 1-14, July.
    15. Ipsakis, Dimitris & Voutetakis, Spyros & Seferlis, Panos & Stergiopoulos, Fotis & Papadopoulou, Simira & Elmasides, Costas, 2008. "The effect of the hysteresis band on power management strategies in a stand-alone power system," Energy, Elsevier, vol. 33(10), pages 1537-1550.
    16. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Farzaneh-Kord, V., 2012. "Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations," Energy, Elsevier, vol. 41(1), pages 420-428.
    17. Jianhui Bai & Xuemei Zong & Yaoming Ma & Binbin Wang & Chuanfeng Zhao & Yikung Yang & Jie Guang & Zhiyuan Cong & Kaili Li & Tao Song, 2022. "Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma," IJERPH, MDPI, vol. 19(15), pages 1-24, July.
    18. Cheng, Tsung-Chieh & Cheng, Chin-Hsiang & Huang, Zhu-Zin & Liao, Guo-Chun, 2011. "Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications," Energy, Elsevier, vol. 36(1), pages 133-140.
    19. Nofuentes, Gustavo & de la Casa, Juan & Solís-Alemán, Ernesto M. & Fernández, Eduardo F., 2017. "Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results," Energy, Elsevier, vol. 141(C), pages 1857-1868.
    20. Cruz-Peragón, Fernando & Casanova-Peláez, Pedro J. & Díaz, Francisco A. & López-García, Rafael & Palomar, José M., 2011. "An approach to evaluate the energy advantage of two axes solar tracking systems in Spain," Applied Energy, Elsevier, vol. 88(12), pages 5131-5142.
    21. Zehir, Mustafa Alparslan & Batman, Alp & Bagriyanik, Mustafa, 2016. "Review and comparison of demand response options for more effective use of renewable energy at consumer level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 631-642.
    22. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    23. Jesús-Ignacio Prieto & David García & Ruth Santoro, 2022. "Comparative Analysis of Accuracy, Simplicity and Generality of Temperature-Based Global Solar Radiation Models: Application to the Solar Map of Asturias," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
    24. Younes, S. & Muneer, T., 2007. "Clear-sky classification procedures and models using a world-wide data-base," Applied Energy, Elsevier, vol. 84(6), pages 623-645, June.
    25. Jianhui Bai & Xuemei Zong & Christian Lanconelli & Angelo Lupi & Amelie Driemel & Vito Vitale & Kaili Li & Tao Song, 2022. "Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica)," IJERPH, MDPI, vol. 19(5), pages 1-30, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:9:p:1517-1531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.