IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v215y2018icp699-716.html
   My bibliography  Save this article

Performance study on a novel hybrid solar gradient utilization system for combined photocatalytic oxidation technology and photovoltaic/thermal technology

Author

Listed:
  • Yu, Bendong
  • Jiang, Qingyang
  • He, Wei
  • Liu, Shanshan
  • Zhou, Fan
  • Ji, Jie
  • Xu, Gang
  • Chen, Hongbing

Abstract

A novel hybrid solar photocatalytic, photovoltaic and thermal recovery system that meets the domestic demands for air purification, electricity generation, space heating and hot water supply in one integrated is proposed (PC-PV/TAW). The photocatalytic module uses ultraviolet part to drive photocatalytic degradation of indoor pollutants, and the photovoltaic/thermal module absorbs visible and infrared parts to generate electricity, warm air and hot water. In this article, three photocatalytic-glass modules with different TiO2 coating density are prepared and the effect of TiO2 coating density on the performance of electrical, thermal and formaldehyde degradation for PC-PV/TAW system is investigated. In addition, comparisons of PC-PV/TAW system with two conventional systems of photovoltaic/thermal water system (PV/TW) and photovoltaic/thermal air and water system (PV/TAW) are conducted. Finally, the associated losses of PC-PV/TAW system and two conventional PV/T systems are analyzed. Results are as follows: (1) PC-PV/TAW system with TiO2 coating density of 1.86 g/m2 behaves the best thermal and electrical performance while a little reduction of formaldehyde degradation performance among three PC-PV/TAW systems; (2) The electrical efficiency of PC-PV/TAW system approaches 0.174 both considering generated electricity by PV modules and saving electricity by purifying air; (3) The overall thermal and electrical efficiency of PC-PV/TAW, PV/TAW and PV/TW system is 0.644, 0.696 and 0.677, respectively, while PC-PV/TAW system can generate total volume of fresh air of 248.040 m3/(m2·day); (4) The loss analyses show the solar spectral characteristics of TiO2 coating is the key to system performance of PC-PV/TAW system.

Suggested Citation

  • Yu, Bendong & Jiang, Qingyang & He, Wei & Liu, Shanshan & Zhou, Fan & Ji, Jie & Xu, Gang & Chen, Hongbing, 2018. "Performance study on a novel hybrid solar gradient utilization system for combined photocatalytic oxidation technology and photovoltaic/thermal technology," Applied Energy, Elsevier, vol. 215(C), pages 699-716.
  • Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:699-716
    DOI: 10.1016/j.apenergy.2018.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    2. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2016. "BIPVT systems for residential applications: An energy and economic analysis for European climates," Applied Energy, Elsevier, vol. 184(C), pages 1411-1431.
    3. He, Wei & Hong, Xiaoqiang & Luo, Bingqing & Chen, Hongbing & Ji, Jie, 2016. "CFD and comparative study on the dual-function solar collectors with and without tile-shaped covers in water heating mode," Renewable Energy, Elsevier, vol. 86(C), pages 1205-1214.
    4. Qin, Lianwei & Wang, Yiping & Vivar, Marta & Huang, Qunwu & Zhu, Li & Fuentes, Manuel & Wang, Zhen, 2015. "Comparison of photovoltaic and photocatalytic performance of non-concentrating and V-trough SOLWAT (solar water purification and renewable electricity generation) systems for water purification," Energy, Elsevier, vol. 85(C), pages 251-260.
    5. Al-Waeli, Ali H.A. & Sopian, K. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "Photovoltaic/Thermal (PV/T) systems: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 109-130.
    6. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    7. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    8. Tiwari, Arvind & Dubey, Swapnil & Sandhu, G.S. & Sodha, M.S. & Anwar, S.I., 2009. "Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes," Applied Energy, Elsevier, vol. 86(12), pages 2592-2597, December.
    9. Sohel, M. Imroz & Ma, Zhenjun & Cooper, Paul & Adams, Jamie & Scott, Robert, 2014. "A dynamic model for air-based photovoltaic thermal systems working under real operating conditions," Applied Energy, Elsevier, vol. 132(C), pages 216-225.
    10. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    11. Othman, M.Y. & Hamid, S.A. & Tabook, M.A.S. & Sopian, K. & Roslan, M.H. & Ibarahim, Z., 2016. "Performance analysis of PV/T Combi with water and air heating system: An experimental study," Renewable Energy, Elsevier, vol. 86(C), pages 716-722.
    12. Farshchimonfared, M. & Bilbao, J.I. & Sproul, A.B., 2015. "Channel depth, air mass flow rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings," Renewable Energy, Elsevier, vol. 76(C), pages 27-35.
    13. Wang, Zhen & Wang, Yiping & Vivar, Marta & Fuentes, Manuel & Zhu, Li & Qin, Lianwei, 2014. "Photovoltaic and photocatalytic performance study of SOLWAT system for the degradation of Methylene Blue, Acid Red 26 and 4-Chlorophenol," Applied Energy, Elsevier, vol. 120(C), pages 1-10.
    14. Ji, Jie & Lu, Jian-Ping & Chow, Tin-Tai & He, Wei & Pei, Gang, 2007. "A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation," Applied Energy, Elsevier, vol. 84(2), pages 222-237, February.
    15. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
    16. Pichel, N. & Vivar, M. & Fuentes, M., 2016. "Performance analysis of a solar photovoltaic hybrid system for electricity generation and simultaneous water disinfection of wild bacteria strains," Applied Energy, Elsevier, vol. 171(C), pages 103-112.
    17. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    18. Wang, Yiping & Jin, Yanchao & Huang, Qunwu & Zhu, Li & Vivar, Marta & Qin, Lianwei & Sun, Yong & Cui, Yong & Cui, Lingyun, 2016. "Photovoltaic and disinfection performance study of a hybrid photovoltaic-solar water disinfection system," Energy, Elsevier, vol. 106(C), pages 757-764.
    19. Dehra, Himanshu, 2017. "An investigation on energy performance assessment of a photovoltaic solar wall under buoyancy-induced and fan-assisted ventilation system," Applied Energy, Elsevier, vol. 191(C), pages 55-74.
    20. Pathak, M.J.M. & Sanders, P.G. & Pearce, J.M., 2014. "Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems," Applied Energy, Elsevier, vol. 120(C), pages 115-124.
    21. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    22. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    23. Solanki, S.C. & Dubey, Swapnil & Tiwari, Arvind, 2009. "Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors," Applied Energy, Elsevier, vol. 86(11), pages 2421-2428, November.
    24. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    2. Li, Wei & Ling, Xiang, 2023. "Performance analysis of a sorption heat storage-photocatalytic combined passive solar envelope for space heating and air purification," Energy, Elsevier, vol. 280(C).
    3. Li, Niansi & Gu, Tao & Li, Yulin & Liu, Xiaoyong & Ji, Jie & Yu, Bendong, 2023. "The performance investigation on a multifunctional wall with photo-thermal catalytic blinds for heating, shading and formaldehyde removal," Energy, Elsevier, vol. 279(C).
    4. Yaghoubi, Sina & Mousavi, Seyyed Mojtaba & Babapoor, Aziz & Binazadeh, Mojtaba & Lai, Chin Wei & Althomali, Raed H. & Rahman, Mohammed M. & Chiang, Wei-Hung, 2024. "Photocatalysts for solar energy conversion: Recent advances and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    5. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    6. Wu, Shuang-Ying & Xu, Li & Xiao, Lan, 2020. "Air purification and thermal performance of photocatalytic-Trombe wall based on multiple physical fields coupling," Renewable Energy, Elsevier, vol. 148(C), pages 338-348.
    7. Yu, Bendong & Hou, Jingxin & He, Wei & Liu, Shanshan & Hu, Zhongting & Ji, Jie & Chen, Hongbing & Xu, Gang, 2018. "Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification," Applied Energy, Elsevier, vol. 226(C), pages 365-380.
    8. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    9. Xia, Xiaokang & Gu, Tao & Fan, Miaomiao & Chen, Haifei & Yu, Bendong, 2022. "A novel solar PV/T driven photocatalytic multifunctional system: Concept proposal and performance investigation," Renewable Energy, Elsevier, vol. 196(C), pages 1127-1141.
    10. Ke, Wei & Ji, Jie & Xu, Lijie & Xie, Hao & Wang, Chuyao & Yu, Bendong, 2021. "Annual performance analysis of a dual-air-channel solar wall system with phase change material in different climate regions of China," Energy, Elsevier, vol. 235(C).
    11. Yu, Bendong & Yang, Jichun & He, Wei & Qin, Minghui & Zhao, Xudong & Chen, Hongbing, 2019. "The performance analysis of a novel hybrid solar gradient utilization photocatalytic-thermal-catalytic-Trombe wall system," Energy, Elsevier, vol. 174(C), pages 420-435.
    12. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    13. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    14. Zhiyong Tian & Bengt Perers & Simon Furbo & Jianhua Fan & Jie Deng & Janne Dragsted, 2018. "A Comprehensive Approach for Modelling Horizontal Diffuse Radiation, Direct Normal Irradiance and Total Tilted Solar Radiation Based on Global Radiation under Danish Climate Conditions," Energies, MDPI, vol. 11(5), pages 1-19, May.
    15. Yu, Qiongwan & Hu, Mingke & Li, Junfei & Wang, Yunyun & Pei, Gang, 2020. "Development of a 2D temperature-irradiance coupling model for performance characterizations of the flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 153(C), pages 404-419.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    2. Athienitis, Andreas K. & Barone, Giovanni & Buonomano, Annamaria & Palombo, Adolfo, 2018. "Assessing active and passive effects of façade building integrated photovoltaics/thermal systems: Dynamic modelling and simulation," Applied Energy, Elsevier, vol. 209(C), pages 355-382.
    3. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    5. Ke, Wei & Ji, Jie & Xu, Lijie & Yu, Bendong & Tian, Xinyi & Wang, Jun, 2021. "Numerical study and experimental validation of a multi-functional dual-air-channel solar wall system with PCM," Energy, Elsevier, vol. 227(C).
    6. Yu, Bendong & Hou, Jingxin & He, Wei & Liu, Shanshan & Hu, Zhongting & Ji, Jie & Chen, Hongbing & Xu, Gang, 2018. "Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification," Applied Energy, Elsevier, vol. 226(C), pages 365-380.
    7. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    8. Ke, Wei & Ji, Jie & Xu, Lijie & Xie, Hao & Wang, Chuyao & Yu, Bendong, 2021. "Annual performance analysis of a dual-air-channel solar wall system with phase change material in different climate regions of China," Energy, Elsevier, vol. 235(C).
    9. Guo, Jinyi & Lin, Simao & Bilbao, Jose I. & White, Stephen D. & Sproul, Alistair B., 2017. "A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1-14.
    10. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    11. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    12. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    13. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    14. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2019. "Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors," Renewable Energy, Elsevier, vol. 137(C), pages 109-126.
    15. Kostic, Lj.T. & Pavlovic, T.M. & Pavlovic, Z.T., 2010. "Optimal design of orientation of PV/T collector with reflectors," Applied Energy, Elsevier, vol. 87(10), pages 3023-3029, October.
    16. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    17. Cui, Lingyun & Zhu, Li & Huang, Qunwu & Wang, Yiping & Jin, Yanchao & Sun, Yong & Cui, Yong & Chen, Miao & Fan, Jiangyang, 2017. "Performance analysis of a solar photochemical photovoltaic hybrid system for decolorization of Acid Red 26 (AR 26)," Energy, Elsevier, vol. 127(C), pages 209-217.
    18. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    20. Debbarma, Mary & Sudhakar, K. & Baredar, Prashant, 2017. "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1276-1288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:215:y:2018:i:c:p:699-716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.