IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp1400-1408.html
   My bibliography  Save this article

Combustion characteristics of straw stored with CaCO3 in bubbling fluidized bed using quartz and olivine as bed materials

Author

Listed:
  • Bozaghian, Marjan
  • Rebbling, Anders
  • Larsson, Sylvia H.
  • Thyrel, Mikael
  • Xiong, Shaojun
  • Skoglund, Nils

Abstract

The addition of Ca-containing compounds can reduce mass loss from agricultural biomass during storage. The resulting alkaline environment is detrimental to microorganisms present in the material. Theoretical analysis of Ca-containing biomass suggests that combustion properties are improved with respect to slagging. To validate the theoretical calculations, barley straw was utilized as a typical model agricultural biomass and combustion characteristics of straw pre-treated with 2 and 4 w/w% CaCO3 for combined improvement of storage and combustion properties were determined through combustion at 700 °C in a bench-scale bubbling fluidized-bed reactor (5 kW) using quartz and olivine sand as bed materials. The combustion characteristics were determined in terms of elemental composition and compound identification in bed ash and bed material including agglomerates, fly ash, particulate matter as well as flue gas measurements. The addition of CaCO3 to straw had both positive and negative effects on its combustion characteristics. Both additive levels raised the total defluidization temperature for both quartz and olivine, and olivine proved to be less susceptible than quartz to reactions with alkali. With Ca-additives, the composition of deposits and fine particulate matter changed to include higher amounts of KCl potentially leading to higher risk for alkali chloride-induced corrosion. Flue gas composition was heavily influenced by CaCO3 additives by significantly elevated CO concentrations likely related to increased levels of gaseous alkali compounds. The results suggest that it is necessary to reduce gaseous alkali compounds, e.g. through kaolin or sulphur addition, if alkali-rich straw is to be co-combusted with Ca-rich biomass or large amounts of Ca-additives.

Suggested Citation

  • Bozaghian, Marjan & Rebbling, Anders & Larsson, Sylvia H. & Thyrel, Mikael & Xiong, Shaojun & Skoglund, Nils, 2018. "Combustion characteristics of straw stored with CaCO3 in bubbling fluidized bed using quartz and olivine as bed materials," Applied Energy, Elsevier, vol. 212(C), pages 1400-1408.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1400-1408
    DOI: 10.1016/j.apenergy.2017.12.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917318366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.12.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Liang & Skreiberg, Øyvind & Becidan, Michael & Li, Hailong, 2016. "Investigation of rye straw ash sintering characteristics and the effect of additives," Applied Energy, Elsevier, vol. 162(C), pages 1195-1204.
    2. Suramaythangkoor, Tritib & Gheewala, Shabbir H., 2010. "Potential alternatives of heat and power technology application using rice straw in Thailand," Applied Energy, Elsevier, vol. 87(1), pages 128-133, January.
    3. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    4. Liu, Tingting & McConkey, Brian & Huffman, Ted & Smith, Stephen & MacGregor, Bob & Yemshanov, Denys & Kulshreshtha, Suren, 2014. "Potential and impacts of renewable energy production from agricultural biomass in Canada," Applied Energy, Elsevier, vol. 130(C), pages 222-229.
    5. Carvalho, Lara & Wopienka, Elisabeth & Pointner, Christian & Lundgren, Joakim & Verma, Vijay Kumar & Haslinger, Walter & Schmidl, Christoph, 2013. "Performance of a pellet boiler fired with agricultural fuels," Applied Energy, Elsevier, vol. 104(C), pages 286-296.
    6. Ekman, Anna & Wallberg, Ola & Joelsson, Elisabeth & Börjesson, Pål, 2013. "Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden," Applied Energy, Elsevier, vol. 102(C), pages 299-308.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    2. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    3. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    4. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.
    5. M. Mofijur & T.M.I. Mahlia & J. Logeswaran & M. Anwar & A.S. Silitonga & S.M. Ashrafur Rahman & A.H. Shamsuddin, 2019. "Potential of Rice Industry Biomass as a Renewable Energy Source," Energies, MDPI, vol. 12(21), pages 1-21, October.
    6. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    7. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    8. Gianluigi De Gennaro & Paolo Rosario Dambruoso & Alessia Di Gilio & Valerio Di Palma & Annalisa Marzocca & Maria Tutino, 2015. "Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System," IJERPH, MDPI, vol. 13(1), pages 1-9, December.
    9. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    10. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    11. Hossam A. Gabbar & Muhammad Sajjad Ahmad, 2024. "Integrated Waste-to-Energy Process Optimization for Municipal Solid Waste," Energies, MDPI, vol. 17(2), pages 1-20, January.
    12. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    13. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    14. Soam, Shveta & Kapoor, Manali & Kumar, Ravindra & Borjesson, Pal & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Global warming potential and energy analysis of second generation ethanol production from rice straw in India," Applied Energy, Elsevier, vol. 184(C), pages 353-364.
    15. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    16. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    17. William Leoncio Carrasco-Chilón & Wuesley Yusmein Alvarez-García & Marieta E. Cervantes Peralta & Carlos Quilcate & Hector V. Vásquez, 2023. "Rye Production under Acid Soils and Drought Conditions: An Alternative for the Sustainability of High Andean Livestock Farming in Peru," Sustainability, MDPI, vol. 15(14), pages 1-12, July.
    18. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    19. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    20. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1400-1408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.