IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222028304.html
   My bibliography  Save this article

How combination of control methods and renewable energies leads a large commercial building to a zero-emission zone – A case study in U.S

Author

Listed:
  • Esmaeilzadeh, Ahmad
  • Deal, Brian
  • Yousefi-Koma, Aghil
  • Zakerzadeh, Mohammad Reza

Abstract

This paper aims to develop a decision-making tool to minimize large commercial buildings’ Heating, Ventilation, Air-conditioning, and Cooling (HVAC) system environmental footprints. We modeled a terminal of an airport as a case study constituting hot water boilers, chillers, and air handling units, which forms the initial HVAC system, in EnergyPlus. The case study model is validated with monthly energy consumption data. Then, the decision-making system is applied on the retrofitted hybrid HVAC system resulted by combining Building Integrated Photovoltaic (BIPV) system, Combined Cooling, Heating and Power (CCHP) unit, and existing HVAC system. The decision-making system is developed based on three kinds of optimized controllers including Model Predictive Controller (MPC), Fuzzy Sliding Mode Control (FSMC), and relay controller (Initial controller of HVAC system). The optimization is designed based on reducing CO2 emission as well as providing comfort temperature. We found that retrofitting by hybrid system reduces emission by 90% compared with the initial system and applying intelligent controllers including MPC and FSMC, improve it to 95% CO2 emission reduction. While initial system provides comfort temperature 85% of the simulation period, retrofitted HVAC system controlled by MPC or FSMC sets indoor temperature 96% of 1-year simulation.

Suggested Citation

  • Esmaeilzadeh, Ahmad & Deal, Brian & Yousefi-Koma, Aghil & Zakerzadeh, Mohammad Reza, 2023. "How combination of control methods and renewable energies leads a large commercial building to a zero-emission zone – A case study in U.S," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028304
    DOI: 10.1016/j.energy.2022.125944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    2. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    4. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    5. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    6. Bianchini, Gianni & Casini, Marco & Pepe, Daniele & Vicino, Antonio & Zanvettor, Giovanni Gino, 2019. "An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings," Applied Energy, Elsevier, vol. 240(C), pages 327-340.
    7. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    8. Aoun, Nadine & Bavière, Roland & Vallée, Mathieu & Aurousseau, Antoine & Sandou, Guillaume, 2019. "Modelling and flexible predictive control of buildings space-heating demand in district heating systems," Energy, Elsevier, vol. 188(C).
    9. Karunakaran, R. & Iniyan, S. & Goic, Ranko, 2010. "Energy efficient fuzzy based combined variable refrigerant volume and variable air volume air conditioning system for buildings," Applied Energy, Elsevier, vol. 87(4), pages 1158-1175, April.
    10. Li, Wenzhuo & Wang, Shengwei, 2022. "A fully distributed optimal control approach for multi-zone dedicated outdoor air systems to be implemented in IoT-enabled building automation networks," Applied Energy, Elsevier, vol. 308(C).
    11. Michailidis, Iakovos T. & Schild, Thomas & Sangi, Roozbeh & Michailidis, Panagiotis & Korkas, Christos & Fütterer, Johannes & Müller, Dirk & Kosmatopoulos, Elias B., 2018. "Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study," Applied Energy, Elsevier, vol. 211(C), pages 113-125.
    12. Khan, Muhammad Waqas & Choudhry, Mohammad Ahmad & Zeeshan, Muhammad & Ali, Ahsan, 2015. "Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit," Energy, Elsevier, vol. 81(C), pages 477-488.
    13. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    14. Ceballos-Fuentealba, Irlanda & Álvarez-Miranda, Eduardo & Torres-Fuchslocher, Carlos & del Campo-Hitschfeld, María Luisa & Díaz-Guerrero, John, 2019. "A simulation and optimisation methodology for choosing energy efficiency measures in non-residential buildings," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zixi & Wang, Yiqin, 2023. "Consumer finance and consumption upgrading: An empirical study of CHFS," Finance Research Letters, Elsevier, vol. 54(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    3. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    5. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    6. Huang, Sen & Lin, Yashen & Chinde, Venkatesh & Ma, Xu & Lian, Jianming, 2021. "Simulation-based performance evaluation of model predictive control for building energy systems," Applied Energy, Elsevier, vol. 281(C).
    7. Frison, Lilli & Kollmar, Manuel & Oliva, Axel & Bürger, Adrian & Diehl, Moritz, 2024. "Model predictive control of bidirectional heat transfer in prosumer-based solar district heating networks," Applied Energy, Elsevier, vol. 358(C).
    8. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    9. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2021. "Energy Flexibility as Additional Energy Source in Multi-Energy Systems with District Cooling," Energies, MDPI, vol. 14(2), pages 1-30, January.
    10. Ahmad Esmaeilzadeh & Brian Deal & Aghil Yousefi-Koma & Mohammad Reza Zakerzadeh, 2022. "How Multi-Criterion Optimized Control Methods Improve Effectiveness of Multi-Zone Building Heating System Upgrading," Energies, MDPI, vol. 15(22), pages 1-27, November.
    11. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    12. Kneiske, T.M. & Niedermeyer, F. & Boelling, C., 2019. "Testing a model predictive control algorithm for a PV-CHP hybrid system on a laboratory test-bench," Applied Energy, Elsevier, vol. 242(C), pages 121-137.
    13. Jiang, Yuliang & Zhu, Shanying & Xu, Qimin & Yang, Bo & Guan, Xinping, 2023. "Hybrid modeling-based temperature and humidity adaptive control for a multi-zone HVAC system," Applied Energy, Elsevier, vol. 334(C).
    14. Raman, Naren Srivaths & Chen, Bo & Barooah, Prabir, 2022. "On energy-efficient HVAC operation with Model Predictive Control: A multiple climate zone study," Applied Energy, Elsevier, vol. 324(C).
    15. Most Nahida Akter & Md Apel Mahmud & Amanullah Maung Than Oo, 2017. "A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids," Energies, MDPI, vol. 10(12), pages 1-27, December.
    16. García Vázquez, C.A. & Cotfas, D.T. & González Santos, A.I. & Cotfas, P.A. & León Ávila, B.Y., 2024. "Reduction of electricity consumption in an AHU using mathematical modelling for controller tuning," Energy, Elsevier, vol. 293(C).
    17. Maier, Laura & Schönegge, Marius & Henn, Sarah & Hering, Dominik & Müller, Dirk, 2022. "Assessing mixed-integer-based heat pump modeling approaches for model predictive control applications in buildings," Applied Energy, Elsevier, vol. 326(C).
    18. Lei, Yue & Zhan, Sicheng & Ono, Eikichi & Peng, Yuzhen & Zhang, Zhiang & Hasama, Takamasa & Chong, Adrian, 2022. "A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings," Applied Energy, Elsevier, vol. 324(C).
    19. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
    20. Zbysław Dobrowolski & Łukasz Sułkowski & Wiesław Danielak, 2021. "Management of Waste Batteries and Accumulators: Quest of European Union Goals," Energies, MDPI, vol. 14(19), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.