IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7910-d687606.html
   My bibliography  Save this article

Enabling Optimal Energy Management with Minimal IoT Requirements: A Legacy A/C Case Study

Author

Listed:
  • Panagiotis Michailidis

    (Electrical and Computer Engineering Department, Polytechnic School of Xanthi, Democritus University of Thrace, 67100 Xanthi, Greece
    Centre for Research & Technology—Hellas (CE.R.T.H.), Information Technologies Institute (I.T.I.), 57001 Thessaloniki, Greece)

  • Paschalis Pelitaris

    (Electrical and Computer Engineering Department, Polytechnic School of Xanthi, Democritus University of Thrace, 67100 Xanthi, Greece)

  • Christos Korkas

    (Electrical and Computer Engineering Department, Polytechnic School of Xanthi, Democritus University of Thrace, 67100 Xanthi, Greece
    Centre for Research & Technology—Hellas (CE.R.T.H.), Information Technologies Institute (I.T.I.), 57001 Thessaloniki, Greece)

  • Iakovos Michailidis

    (Electrical and Computer Engineering Department, Polytechnic School of Xanthi, Democritus University of Thrace, 67100 Xanthi, Greece
    Centre for Research & Technology—Hellas (CE.R.T.H.), Information Technologies Institute (I.T.I.), 57001 Thessaloniki, Greece)

  • Simone Baldi

    (School of Mathematics, Jiulonghu Campus, Southeast University, Nanjijng 211189, China
    Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Elias Kosmatopoulos

    (Electrical and Computer Engineering Department, Polytechnic School of Xanthi, Democritus University of Thrace, 67100 Xanthi, Greece
    Centre for Research & Technology—Hellas (CE.R.T.H.), Information Technologies Institute (I.T.I.), 57001 Thessaloniki, Greece)

Abstract

The existing literature on energy saving focuses on large-scale buildings, wherein the energy-saving potential is substantially larger than smaller-scale buildings. However, the research intensity is significantly less for small-scale deployments and their capacities to regulate energy use individually, directly and without depreciating users’ comfort and needs. The current research effort focused on energy saving and user satisfaction, concerning a low-cost—yet technically sophisticated—methodology for controlling conventional residential HVAC units through cheap yet reliable actuation and sensing and auxiliary IoT equipment. The basic ingredients of the proposed experimental methodology involve a conventional A/C unit, an Arduino microcontroller, typical wireless IoT sensors and actuators, a configured graphical environment and a sophisticated, model-free, optimization-and-control algorithm (PCAO) that portrays the ground basis for achieving improved performance results in comparison with conventional methods. The main goal of this study was to produce a system that would adequately and expeditiously achieve energy savings by utilizing minimal hardware/equipment (affordability). The system was designed to be easily expandable in terms of new units or thermal equipment (expandability) and also to be autonomous, requiring zero user interventions at the experimental site (automation). The real-life measurements were collected over two different seasonal periods of the year (winter, summer) and concerned a conventional apartment in the city of Xanthi, Northern Greece, where summers and winters exhibit quite diverse climate characteristics. The final results revealed the increased efficiency of PCAO’s optimization in comparison with a conventional rule-based control strategy (RBC), as concerns energy savings and user satisfaction.

Suggested Citation

  • Panagiotis Michailidis & Paschalis Pelitaris & Christos Korkas & Iakovos Michailidis & Simone Baldi & Elias Kosmatopoulos, 2021. "Enabling Optimal Energy Management with Minimal IoT Requirements: A Legacy A/C Case Study," Energies, MDPI, vol. 14(23), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7910-:d:687606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baldi, Simone & Michailidis, Iakovos & Ravanis, Christos & Kosmatopoulos, Elias B., 2015. "Model-based and model-free “plug-and-play” building energy efficient control," Applied Energy, Elsevier, vol. 154(C), pages 829-841.
    2. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Iakovos T. Michailidis & Roozbeh Sangi & Panagiotis Michailidis & Thomas Schild & Johannes Fuetterer & Dirk Mueller & Elias B. Kosmatopoulos, 2020. "Balancing Energy Efficiency with Indoor Comfort Using Smart Control Agents: A Simulative Case Study," Energies, MDPI, vol. 13(23), pages 1-28, November.
    4. Michailidis, Iakovos T. & Schild, Thomas & Sangi, Roozbeh & Michailidis, Panagiotis & Korkas, Christos & Fütterer, Johannes & Müller, Dirk & Kosmatopoulos, Elias B., 2018. "Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study," Applied Energy, Elsevier, vol. 211(C), pages 113-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    3. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    4. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    5. Temitope Omotayo & Alireza Moghayedi & Bankole Awuzie & Saheed Ajayi, 2021. "Infrastructure Elements for Smart Campuses: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(14), pages 1-32, July.
    6. Zeyue Sun & Mohsen Eskandari & Chaoran Zheng & Ming Li, 2022. "Handling Computation Hardness and Time Complexity Issue of Battery Energy Storage Scheduling in Microgrids by Deep Reinforcement Learning," Energies, MDPI, vol. 16(1), pages 1-20, December.
    7. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    9. Isaías Gomes & Rui Melicio & Victor M. F. Mendes, 2021. "Assessing the Value of Demand Response in Microgrids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    10. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    11. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    12. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. Damien Picard & Lieve Helsen, 2018. "Economic Optimal HVAC Design for Hybrid GEOTABS Buildings and CO 2 Emissions Analysis," Energies, MDPI, vol. 11(2), pages 1-19, February.
    14. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    15. Arman Ameen & Mathias Cehlin & Ulf Larsson & Taghi Karimipanah, 2019. "Experimental Investigation of Ventilation Performance of Different Air Distribution Systems in an Office Environment—Heating Mode," Energies, MDPI, vol. 12(10), pages 1-13, May.
    16. Siva Swaminathan & Ximan Wang & Bingyu Zhou & Simone Baldi, 2018. "A University Building Test Case for Occupancy-Based Building Automation," Energies, MDPI, vol. 11(11), pages 1-15, November.
    17. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    18. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    19. Simone Baldi & Iakovos Michailidis & Vasiliki Ntampasi & Elias Kosmatopoulos & Ioannis Papamichail & Markos Papageorgiou, 2019. "A Simulation-Based Traffic Signal Control for Congested Urban Traffic Networks," Service Science, INFORMS, vol. 53(1), pages 6-20, February.
    20. Kah Phooi Seng & Li Minn Ang & Ericmoore Ngharamike, 2022. "Artificial intelligence Internet of Things: A new paradigm of distributed sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501477211, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7910-:d:687606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.