Improving energy recovery efficiency by retrofitting a PCM-based technology to an ORC system operating under thermal power fluctuations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.09.054
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Guo, Jiangfeng & Xu, Mingtian & Cheng, Lin, 2010. "Thermodynamic analysis of waste heat power generation system," Energy, Elsevier, vol. 35(7), pages 2824-2835.
- Si, Minxing & Thompson, Shirley & Calder, Kurtis, 2011. "Energy efficiency assessment by process heating assessment and survey tool (PHAST) and feasibility analysis of waste heat recovery in the reheat furnace at a steel company," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2904-2908, August.
- Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2010. "Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle," Energy, Elsevier, vol. 35(12), pages 5049-5062.
- Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2011. "Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions," Applied Energy, Elsevier, vol. 88(9), pages 2995-3004.
- Sun, Zhixin & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2012. "Dynamic optimal design of a power generation system utilizing industrial waste heat considering parameter fluctuations of exhaust gas," Energy, Elsevier, vol. 44(1), pages 1035-1043.
- Pulat, E. & Etemoglu, A.B. & Can, M., 2009. "Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 663-672, April.
- Lu, Hongyou & Price, Lynn & Zhang, Qi, 2016. "Capturing the invisible resource: Analysis of waste heat potential in Chinese industry," Applied Energy, Elsevier, vol. 161(C), pages 497-511.
- Kim, T.S., 2004. "Comparative analysis on the part load performance of combined cycle plants considering design performance and power control strategy," Energy, Elsevier, vol. 29(1), pages 71-85.
- Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
- Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
- Casarosa, C. & Donatini, F. & Franco, A., 2004. "Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants," Energy, Elsevier, vol. 29(3), pages 389-414.
- Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
- Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2009. "Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry," Applied Energy, Elsevier, vol. 86(6), pages 941-948, June.
- Nardin, Gioacchino & Meneghetti, Antonella & Dal Magro, Fabio & Benedetti, Nicole, 2014. "PCM-based energy recovery from electric arc furnaces," Applied Energy, Elsevier, vol. 136(C), pages 947-955.
- Arens, M. & Worrell, E., 2014. "Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption," Energy, Elsevier, vol. 73(C), pages 968-977.
- Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
- Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
- Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiang, Ruicheng & Qian, Gao & Li, Zhi & Yu, Xiaoli & Lu, Yiji, 2024. "Progress and challenges of latent thermal energy storage through external field-dependent heat transfer enhancement methods," Energy, Elsevier, vol. 304(C).
- Miao, Zheng & Yan, Peiwei & Xiao, Meng & Zhang, Manzheng & Xu, Jinliang, 2023. "Comparative study on operating strategies of the organic Rankine cycle under transient heat source," Energy, Elsevier, vol. 285(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dal Magro, Fabio & Savino, Stefano & Meneghetti, Antonella & Nardin, Gioacchino, 2017. "Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry," Energy, Elsevier, vol. 137(C), pages 1107-1118.
- Sun, Zhixin & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2012. "Dynamic optimal design of a power generation system utilizing industrial waste heat considering parameter fluctuations of exhaust gas," Energy, Elsevier, vol. 44(1), pages 1035-1043.
- Rezaei, Ehsan & Barbato, Maurizio & Ortona, Alberto & Haussener, Sophia, 2020. "Design and optimization of a high-temperature latent heat storage unit," Applied Energy, Elsevier, vol. 261(C).
- Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
- Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
- Pusnik, M. & Al-Mansour, F. & Sucic, B. & Cesen, M., 2017. "Trends and prospects of energy efficiency development in Slovenian industry," Energy, Elsevier, vol. 136(C), pages 52-62.
- Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
- Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
- Gustavo Cáceres & Karina Fullenkamp & Macarena Montané & Krzysztof Naplocha & Anna Dmitruk, 2017. "Encapsulated Nitrates Phase Change Material Selection for Use as Thermal Storage and Heat Transfer Materials at High Temperature in Concentrated Solar Power Plants," Energies, MDPI, vol. 10(9), pages 1-21, September.
- Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
- Tang, Song-Zhen & He, Yan & He, Ya-Ling & Wang, Fei-Long, 2020. "Enhancing the thermal response of a latent heat storage system for suppressing temperature fluctuation of dusty flue gas," Applied Energy, Elsevier, vol. 266(C).
- Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Goswami, D. Yogi & Stefanakos, Elias, 2018. "Influence of design on performance of a latent heat storage system at high temperatures," Applied Energy, Elsevier, vol. 224(C), pages 220-229.
- Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
- Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
- Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
More about this item
Keywords
Waste heat recovery; Phase change material; Organic Rankine Cycles; Thermal power fluctuations; Steel industry;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:972-985. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.