IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v205y2017icp477-485.html
   My bibliography  Save this article

Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts

Author

Listed:
  • Liu, Tingting
  • Huffman, Ted
  • Kulshreshtha, Suren
  • McConkey, Brian
  • Du, Yuneng
  • Green, Melodie
  • Liu, Jiangui
  • Shang, Jiali
  • Geng, Xiaoyuan

Abstract

Growing energy crops such as perennial grasses and trees on marginal land offers the possibility of reducing the competition with food crops for land resources. Identifying the productivity, economic feasibility and greenhouse gas (GHG) emissions impact is the premise of our study on using marginal land for bioenergy production in Canada. The area of marginal land available was identified by intersecting national maps of land suitability and land cover. The costs and potential returns of growing energy crops on marginal land were then analyzed, and the GHG emissions were evaluated using a GHG emissions model. The results indicated that approximately 9.48 million ha of potentially useable marginal land was available in Canada. The land cover of the available marginal land consists of grassland (68.2%) and shrubland (31.8%). If the available marginal land was completely utilized, the biomass production would be 23.7 million tonnes of switchgrass or 51.2 million tonnes of hybrid poplar. The production of biofuel from these biomass sources would be 5.69 and 11.26 billion L, equivalent to 14.0% and 27.7% of the total transportation gasoline consumption in Canada in 2014, for switchgrass and poplar, respectively. On the marginal land, the average production cost was estimated to be approximately 68.2 CAD $/t (173.8 CAD $/ha) for switchgrass, and 26.2 CAD $/t (140.2 CAD $/ha) for coppiced hybrid poplar. The production of biomass showed a positive net return on marginal land in Ontario (eastern Canada), with a biomass price of 99 CAD $/t and 35 CAD $/t for switchgrass and coppiced hybrid poplar, respectively. When the biomass price is less than 101 CAD $/t, growing switchgrass in the provinces of Alberta and Saskatchewan, where 69% of Canada’s marginal land is located, was not considered economically attractive. By replacing fossil fuel, the maximum potential switchgrass production on marginal land would reduce GHG emissions by 29.49 million t CO2-eq/yr. However, when considering the economic aspect of production, the potential reduction of 6.1 million tonnes CO2/yr from planting poplar is more viable. Further analysis of the broader economic value of the current use of marginal land (primarily livestock grazing) and the impacts on biodiversity, soil quality, and water resources is needed to completely assess the practicality of a widespread increase in biomass production for bioenergy on Canada’s marginal land.

Suggested Citation

  • Liu, Tingting & Huffman, Ted & Kulshreshtha, Suren & McConkey, Brian & Du, Yuneng & Green, Melodie & Liu, Jiangui & Shang, Jiali & Geng, Xiaoyuan, 2017. "Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts," Applied Energy, Elsevier, vol. 205(C), pages 477-485.
  • Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:477-485
    DOI: 10.1016/j.apenergy.2017.07.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917309996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niblick, Briana & Monnell, Jason D. & Zhao, Xi & Landis, Amy E., 2013. "Using geographic information systems to assess potential biofuel crop production on urban marginal lands," Applied Energy, Elsevier, vol. 103(C), pages 234-242.
    2. Tian, Yishui & Zhao, Lixin & Meng, Haibo & Sun, Liying & Yan, Jinyue, 2009. "Estimation of un-used land potential for biofuels development in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 77-85, November.
    3. Xue, Shuai & Lewandowski, Iris & Wang, Xiaoyu & Yi, Zili, 2016. "Assessment of the production potentials of Miscanthus on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 932-943.
    4. Glithero, N.J. & Wilson, P. & Ramsden, S.J., 2015. "Optimal combinable and dedicated energy crop scenarios for marginal land," Applied Energy, Elsevier, vol. 147(C), pages 82-91.
    5. Liu, Tingting & McConkey, Brian & Huffman, Ted & Smith, Stephen & MacGregor, Bob & Yemshanov, Denys & Kulshreshtha, Suren, 2014. "Potential and impacts of renewable energy production from agricultural biomass in Canada," Applied Energy, Elsevier, vol. 130(C), pages 222-229.
    6. Edrisi, Sheikh Adil & Abhilash, P.C., 2016. "Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1537-1551.
    7. Kulshreshtha, S. N. & Junkins, B. & Desjardins, R., 2000. "Prioritizing greenhouse gas emission mitigation measures for agriculture," Agricultural Systems, Elsevier, vol. 66(3), pages 145-166, December.
    8. Saha, Mithun & Eckelman, Matthew J., 2015. "Geospatial assessment of potential bioenergy crop production on urban marginal land," Applied Energy, Elsevier, vol. 159(C), pages 540-547.
    9. Coyle, William T., 2007. "The Future of Biofuels: A Global Perspective," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-6, November.
    10. De Laporte, Aaron V. & Weersink, Alfons J. & McKenney, Daniel W., 2016. "Effects of supply chain structure and biomass prices on bioenergy feedstock supply," Applied Energy, Elsevier, vol. 183(C), pages 1053-1064.
    11. Milbrandt, Anelia R. & Heimiller, Donna M. & Perry, Andrew D. & Field, Christopher B., 2014. "Renewable energy potential on marginal lands in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 473-481.
    12. Shortall, O.K., 2013. "“Marginal land” for energy crops: Exploring definitions and embedded assumptions," Energy Policy, Elsevier, vol. 62(C), pages 19-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Ziyue & Zhang, Fan & Gao, Chenzhen & Mangi, Eugenio & Ali, Cheshmehzangi, 2024. "The potential for bioenergy generated on marginal land to offset agricultural greenhouse gas emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Liu, Zhen & Saydaliev, Hayot Berk & Lan, Jing & Ali, Sajid & Anser, Muhammad Khalid, 2022. "Assessing the effectiveness of biomass energy in mitigating CO2 emissions: Evidence from Top-10 biomass energy consumer countries," Renewable Energy, Elsevier, vol. 191(C), pages 842-851.
    3. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    4. Zaman Sajid & Nicholas Lynch, 2018. "Financial Modelling Strategies for Social Life Cycle Assessment: A Project Appraisal of Biodiesel Production and Sustainability in Newfoundland and Labrador, Canada," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    5. Yan, Dan & Liu, Litao & Li, Jinkai & Wu, Jiaqian & Qin, Wei & Werners, Saskia E., 2021. "Are the planning targets of liquid biofuel development achievable in China under climate change?," Agricultural Systems, Elsevier, vol. 186(C).
    6. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    7. Liu, Jiangui & Huffman, Ted & Green, Melodie, 2018. "Potential impacts of agricultural land use on soil cover in response to bioenergy production in Canada," Land Use Policy, Elsevier, vol. 75(C), pages 33-42.
    8. Peiwei Fan & Mengmeng Hao & Fangyu Ding & Dong Jiang & Donglin Dong, 2020. "Quantifying Global Potential Marginal Land Resources for Switchgrass," Energies, MDPI, vol. 13(23), pages 1-13, November.
    9. Amir Behzad Bazrgar & Aeryn Ng & Brent Coleman & Muhammad Waseem Ashiq & Andrew Gordon & Naresh Thevathasan, 2020. "Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    10. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    11. Bennett, Carly & Blanchet, Jocelyn & Trowell, Keena & Bergthorson, Jeffrey, 2023. "Decarbonizing Canada’s energy supply and exports with solar PV and e-fuels," Renewable Energy, Elsevier, vol. 217(C).
    12. Ma, Xiaotong & Li, Yingjie & Duan, Lunbo & Anthony, Edward & Liu, Hantao, 2018. "CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions," Applied Energy, Elsevier, vol. 225(C), pages 402-412.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    3. Yan, Dan & Liu, Litao & Li, Jinkai & Wu, Jiaqian & Qin, Wei & Werners, Saskia E., 2021. "Are the planning targets of liquid biofuel development achievable in China under climate change?," Agricultural Systems, Elsevier, vol. 186(C).
    4. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    5. Saha, Mithun & Eckelman, Matthew J., 2015. "Geospatial assessment of potential bioenergy crop production on urban marginal land," Applied Energy, Elsevier, vol. 159(C), pages 540-547.
    6. Niblick, Briana & Landis, Amy E., 2016. "Assessing renewable energy potential on United States marginal and contaminated sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 489-497.
    7. Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
    8. Sallustio, Lorenzo & Pettenella, Davide & Merlini, Paolo & Romano, Raoul & Salvati, Luca & Marchetti, Marco & Corona, Piermaria, 2018. "Assessing the economic marginality of agricultural lands in Italy to support land use planning," Land Use Policy, Elsevier, vol. 76(C), pages 526-534.
    9. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    10. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    11. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    12. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    14. Sallustio, Lorenzo & Harfouche, Antoine L. & Salvati, Luca & Marchetti, Marco & Corona, Piermaria, 2022. "Evaluating the potential of marginal lands available for sustainable cellulosic biofuel production in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    15. Marek Helis & Maria Strzelczyk & Wojciech Golimowski & Aleksandra Steinhoff-Wrześniewska & Anna Paszkiewicz-Jasińska & Małgorzata Hawrot-Paw & Adam Koniuszy & Marek Hryniewicz, 2021. "Biomass Potential of the Marginal Land of the Polish Sudetes Mountain Range," Energies, MDPI, vol. 14(21), pages 1-16, November.
    16. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    17. Edrisi, Sheikh Adil & Dubey, Pradeep Kumar & Chaturvedi, Rajiv Kumar & Abhilash, Purushothaman Chirakkuzhyil, 2022. "Bioenergy crop production potential and carbon mitigation from marginal and degraded lands of India," Renewable Energy, Elsevier, vol. 192(C), pages 300-312.
    18. De Laporte, Aaron V. & Ripplinger, David G., 2019. "The effects of site selection, opportunity costs and transportation costs on bioethanol production," Renewable Energy, Elsevier, vol. 131(C), pages 73-82.
    19. Edrisi, Sheikh Adil & Abhilash, P.C., 2016. "Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1537-1551.
    20. Laasasenaho, Kari & Lensu, Anssi & Rintala, Jukka & Lauhanen, Risto, 2017. "Landowners’ willingness to promote bioenergy production on wasteland − future impact on land use of cutaway peatlands," Land Use Policy, Elsevier, vol. 69(C), pages 167-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:205:y:2017:i:c:p:477-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.