IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3901-d356291.html
   My bibliography  Save this article

Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada

Author

Listed:
  • Amir Behzad Bazrgar

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
    Department of Agricultural Sciences, Kashmar Branch, Islamic Azad University, Kashmar, Iran)

  • Aeryn Ng

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Brent Coleman

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Muhammad Waseem Ashiq

    (Southern Biodiversity & Monitoring Unit, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON K9J3C7 Canada)

  • Andrew Gordon

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Naresh Thevathasan

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada)

Abstract

Enhancement of terrestrial carbon (C) sequestration on marginal lands in Canada using bioenergy crops has been proposed. However, factors influencing system-level C gain (SLCG) potentials of maturing bioenergy cropping systems, including belowground biomass C and soil organic carbon (SOC) accumulation, are not well documented. This study, therefore, quantified the long-term C sequestration potentials at the system-level in nine-year-old (2009–2018) woody (poplar clone 2293–29 ( Populus spp.), hybrid willow clone SX-67 ( Salix miyabeana )), and herbaceous (miscanthus ( Miscanthus giganteus var. Nagara), switchgrass ( Panicum virgatum )) bioenergy crop production systems on marginal lands in Southern Ontario, Canada. Results showed that woody cropping systems had significantly higher aboveground biomass C stock of 10.02 compared to 7.65 Mg C ha −1 in herbaceous cropping systems, although their belowground biomass C was not significantly different. Woody crops and switchgrass were able to increase SOC significantly over the tested period. However, when long term soil organic carbon (∆SOC) gains were compared, woody and herbaceous biomass crops gained 11.0 and 9.8 Mg C ha −1 , respectively, which were not statistically different. Results also indicate a significantly higher total C pool [aboveground + belowground + soil organic carbon] in the willow (103 Mg ha −1 ) biomass system compared to other bioenergy crops. In the nine-year study period, woody crops had only 1.35 Mg C ha −1 more SLCG, suggesting that the influence of woody and herbaceous biomass crops on SLCG and ∆SOC sequestrations were similar. Further, among all tested biomass crops, willow had the highest annual SLCG of 1.66 Mg C ha −1 y −1 .

Suggested Citation

  • Amir Behzad Bazrgar & Aeryn Ng & Brent Coleman & Muhammad Waseem Ashiq & Andrew Gordon & Naresh Thevathasan, 2020. "Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3901-:d:356291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alban Kitous & Kimon Keramidas, 2017. "Global Energy and Climate Outlook 2017: Greenhouse gas emissions and energy balances: Supplementary material to "Global Energy and Climate Outlook 2017: How climate policies improve air quality&q," JRC Research Reports JRC107366, Joint Research Centre.
    2. Ilya Gelfand & Ritvik Sahajpal & Xuesong Zhang & R. César Izaurralde & Katherine L. Gross & G. Philip Robertson, 2013. "Sustainable bioenergy production from marginal lands in the US Midwest," Nature, Nature, vol. 493(7433), pages 514-517, January.
    3. Liu, Tingting & Huffman, Ted & Kulshreshtha, Suren & McConkey, Brian & Du, Yuneng & Green, Melodie & Liu, Jiangui & Shang, Jiali & Geng, Xiaoyuan, 2017. "Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts," Applied Energy, Elsevier, vol. 205(C), pages 477-485.
    4. Alban Kitous & Kimon Keramidas & Toon Vandyck & Bert Saveyn & Rita Van Dingenen & Joe Spadaro & Mike Holland, 2017. "Global Energy and Climate Outlook 2017: How climate policies improve air quality," JRC Research Reports JRC107944, Joint Research Centre.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Jarecki & Kumudinie Kariyapperuma & Bill Deen & Jordan Graham & Amir Behzad Bazrgar & Sowthini Vijayakumar & Mahendra Thimmanagari & Andrew Gordon & Paul Voroney & Naresh Thevathasan, 2020. "The Potential of Switchgrass and Miscanthus to Enhance Soil Organic Carbon Sequestration—Predicted by DayCent Model," Land, MDPI, vol. 9(12), pages 1-17, December.
    2. Maya Sollen-Norrlin & Bhim Bahadur Ghaley & Naomi Laura Jane Rintoul, 2020. "Agroforestry Benefits and Challenges for Adoption in Europe and Beyond," Sustainability, MDPI, vol. 12(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José M. Rueda-Cantuche & Tamas Revesz & Antonio F. Amores & Agustín Velázquez & Marian Mraz & Emanuele Ferrari & Alfredo J. Mainar-Causapé & Letizia Montinari & Bert Saveyn, 2020. "Improving the European input–output database for global trade analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-16, December.
    2. Yu, Ziyue & Zhang, Fan & Gao, Chenzhen & Mangi, Eugenio & Ali, Cheshmehzangi, 2024. "The potential for bioenergy generated on marginal land to offset agricultural greenhouse gas emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Louis, Jean-Nicolas & Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Tran-Quoc, Tuan & Hadjsaid, Nouredine, 2018. "Environmental impact indicators for the electricity mix and network development planning towards 2050 – A POLES and EUTGRID model," Energy, Elsevier, vol. 163(C), pages 618-628.
    4. Toon Vandyck & Alban Kitous & Bert Saveyn & Kimon Keramidas & Luis Rey Los Santos & Krzysztof Wojtowicz, 2018. "Economic Exposure to Oil Price Shocks and the Fragility of Oil-Exporting Countries," Energies, MDPI, vol. 11(4), pages 1-19, April.
    5. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    6. Liu, Jiangui & Huffman, Ted & Green, Melodie, 2018. "Potential impacts of agricultural land use on soil cover in response to bioenergy production in Canada," Land Use Policy, Elsevier, vol. 75(C), pages 33-42.
    7. den Elzen, Michel & Kuramochi, Takeshi & Höhne, Niklas & Cantzler, Jasmin & Esmeijer, Kendall & Fekete, Hanna & Fransen, Taryn & Keramidas, Kimon & Roelfsema, Mark & Sha, Fu & van Soest, Heleen & Vand, 2019. "Are the G20 economies making enough progress to meet their NDC targets?," Energy Policy, Elsevier, vol. 126(C), pages 238-250.
    8. Yan, Dan & Liu, Litao & Li, Jinkai & Wu, Jiaqian & Qin, Wei & Werners, Saskia E., 2021. "Are the planning targets of liquid biofuel development achievable in China under climate change?," Agricultural Systems, Elsevier, vol. 186(C).
    9. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    10. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    11. Liu, Guilin & Mai, Jianfeng, 2022. "Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios," Energy, Elsevier, vol. 251(C).
    12. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    13. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    14. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    15. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    16. Ujjayant Chakravorty & Marie‐Hélène Hubert & Beyza Ural Marchand, 2019. "Food for fuel: The effect of the US biofuel mandate on poverty in India," Quantitative Economics, Econometric Society, vol. 10(3), pages 1153-1193, July.
    17. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    18. Niblick, Briana & Landis, Amy E., 2016. "Assessing renewable energy potential on United States marginal and contaminated sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 489-497.
    19. Kimon Keramidas & Stephane Tchung-Ming & Ana Raquel Diaz-Vazquez & Matthias Weitzel & Toon Vandyck & Jacques Despres & Andreas Schmitz & Luis Rey Los Santos & Krzysztof Wojtowicz & Burkhard Schade & B, 2018. "Global Energy and Climate Outlook 2018: Sectoral mitigation options towards a low-emissions economy," JRC Research Reports JRC113446, Joint Research Centre.
    20. Zaman Sajid & Nicholas Lynch, 2018. "Financial Modelling Strategies for Social Life Cycle Assessment: A Project Appraisal of Biodiesel Production and Sustainability in Newfoundland and Labrador, Canada," Sustainability, MDPI, vol. 10(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3901-:d:356291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.