IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6473160.html
   My bibliography  Save this article

A Review of Semantic Sensor Technologies in Internet of Things Architectures

Author

Listed:
  • Gergely Marcell Honti
  • Janos Abonyi

Abstract

Intelligent sensors should be seamlessly, securely, and trustworthy interconnected to enable automated high-level smart applications. Semantic metadata can provide contextual information to support the accessibility of these features, making it easier for machines and humans to process the sensory data and achieve interoperability. The unique overview of sensor ontologies according to the semantic needs of the layers of IoT solutions can serve a guideline of engineers and researchers interested in the development of intelligent sensor-based solutions. The explored trends show that ontologies will play an even more essential role in interlinked IoT systems as interoperability and the generation of controlled linkable data sources should be based on semantically enriched sensory data.

Suggested Citation

  • Gergely Marcell Honti & Janos Abonyi, 2019. "A Review of Semantic Sensor Technologies in Internet of Things Architectures," Complexity, Hindawi, vol. 2019, pages 1-21, June.
  • Handle: RePEc:hin:complx:6473160
    DOI: 10.1155/2019/6473160
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6473160.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6473160.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6473160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Gruber, 2007. "Ontology of Folksonomy: A Mash-Up of Apples and Oranges," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 3(1), pages 1-11, January.
    2. Payam Barnaghi & Wei Wang & Cory Henson & Kerry Taylor, 2012. "Semantics for the Internet of Things: Early Progress and Back to the Future," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 8(1), pages 1-21, January.
    3. Vasja Roblek & Maja Meško & Alojz Krapež, 2016. "A Complex View of Industry 4.0," SAGE Open, , vol. 6(2), pages 21582440166, June.
    4. Shancang Li & Li Da Xu & Shanshan Zhao, 2015. "The internet of things: a survey," Information Systems Frontiers, Springer, vol. 17(2), pages 243-259, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Barzegar & Abolghasem Sadeghi-Niaraki & Maryam Shakeri & Soo-Mi Choi, 2019. "An Improved Route-Finding Algorithm Using Ubiquitous Ontology-Based Experiences Modeling," Complexity, Hindawi, vol. 2019, pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Jiang & Shuyu Sun & Hongtao Xu & Shukuan Zhao & Yong Chen, 2020. "Enterprises' network structure and their technology standardization capability in Industry 4.0," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 749-765, July.
    2. Hong Jiang & Sipeng Gao & Shukuan Zhao & Hong Chen, 2020. "Competition of technology standards in Industry 4.0: An innovation ecosystem perspective," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 772-783, July.
    3. Rosin Frédéric & Magnani Florian & Joblot Laurent & Pascal Forget & Robert Pellerin & Lamour Samir, 2022. "Lean 4.0: typology of scenarios and case studies to characterize Industry 4.0 autonomy model [Lean 4.0 : typologie de scénarios d'études visant à caractériser les modèles d'autonomie 4.0]," Post-Print hal-03799489, HAL.
    4. Zhaoyu Li & Rui Xu & Pingyuan Cui & Lida Xu & Wu He, 0. "Geometry-based propagation of temporal constraints," Information Systems Frontiers, Springer, vol. 0, pages 1-14.
    5. Arfi, Wissal Ben & Nasr, Imed Ben & Kondrateva, Galina & Hikkerova, Lubica, 2021. "The role of trust in intention to use the IoT in eHealth: Application of the modified UTAUT in a consumer context," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    6. Waleed Al-Zaidi & Farsat Shaban & Dilgash Qadir M., 2022. "Internet of Things in Enhancing Competitive Capabilities: An Exploratory Study," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 8(2), pages 25-32, January.
    7. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    8. Ana Fernández-Vilas & Rebeca P. Díaz-Redondo & Sandra Servia-Rodríguez, 2015. "IPTV parental control: A collaborative model for the Social Web," Information Systems Frontiers, Springer, vol. 17(5), pages 1161-1176, October.
    9. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    10. Nagendra Kumar Sharma & Vimal Kumar & Kuei-Kuei Lai & Wen-Kuo Chen, 2022. "Perceived Impediments and Anticipated Solutions to HR (Human Resource) Towards Implementing Industry 4.0 in SMEs: Impediments and Anticipated Solutions to HR," International Journal of Technology and Human Interaction (IJTHI), IGI Global, vol. 18(7), pages 1-26, June.
    11. Joseph Chambers & James Evans, 2020. "Informal urbanism and the Internet of Things: Reliability, trust and the reconfiguration of infrastructure," Urban Studies, Urban Studies Journal Limited, vol. 57(14), pages 2918-2935, November.
    12. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    13. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    14. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    15. Michaela Sprenger & Tobias Mettler & Robert Winter, 0. "A viability theory for digital businesses: Exploring the evolutionary changes of revenue mechanisms to support managerial decisions," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    16. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
    17. Siqing Shan & Xin Wen & Yigang Wei & Zijin Wang & Yong Chen, 2020. "Intelligent manufacturing in industry 4.0: A case study of Sany heavy industry," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 679-690, July.
    18. Payam Hanafizadeh & Parastou Hatami & Morteza Analoui & Amir Albadvi, 2021. "Business model innovation driven by the internet of things technology, in internet service providers’ business context," Information Systems and e-Business Management, Springer, vol. 19(4), pages 1175-1243, December.
    19. Christian Hoyer & Indra Gunawan & Carmen Haule Reaiche, 2020. "The Implementation of Industry 4.0 – A Systematic Literature Review of the Key Factors," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 557-578, July.
    20. Humphrey M. Sabi & Faith-Michael E. Uzoka & Kehbuma Langmia & Felix N. Njeh & Clive K. Tsuma, 0. "A cross-country model of contextual factors impacting cloud computing adoption at universities in sub-Saharan Africa," Information Systems Frontiers, Springer, vol. 0, pages 1-24.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6473160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.