Research on the generation method of missing hourly solar radiation data based on multiple neural network algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129650
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).
- Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
- Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
- Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
- Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Ma, Lei & Chen, Bolong, 2023. "A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results," Energy, Elsevier, vol. 271(C).
- Neshat, Mehdi & Nezhad, Meysam Majidi & Mirjalili, Seyedali & Garcia, Davide Astiaso & Dahlquist, Erik & Gandomi, Amir H., 2023. "Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy," Energy, Elsevier, vol. 278(C).
- Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
- Li, Honglian & Zhang, Tiantian & Wang, An & Wang, Mengli & Huang, Jin & Hu, Yao, 2023. "A new method of generating extreme building energy year and its application," Energy, Elsevier, vol. 278(PB).
- Ecevit, A. & Akinoglu, B.G. & Aksoy, B., 2002. "Generation of a typical meteorological year using sunshine duration data," Energy, Elsevier, vol. 27(10), pages 947-954.
- Cao, Qimeng & Liu, Yan & Sun, Xue & Yang, Liu, 2022. "Country-level evaluation of solar radiation data sets using ground measurements in China," Energy, Elsevier, vol. 241(C).
- Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
- Yang, Liu & Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "A new method to develop typical weather years in different climates for building energy use studies," Energy, Elsevier, vol. 36(10), pages 6121-6129.
- Peng, Jinqing & Lu, Lin & Wang, Meng, 2019. "A new model to evaluate solar spectrum impacts on the short circuit current of solar photovoltaic modules," Energy, Elsevier, vol. 169(C), pages 29-37.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cao, Qimeng & Liu, Yan & Sun, Xue & Yang, Liu, 2022. "Country-level evaluation of solar radiation data sets using ground measurements in China," Energy, Elsevier, vol. 241(C).
- Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
- Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
- Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
- Pusat, Saban & Ekmekçi, İsmail & Akkoyunlu, Mustafa Tahir, 2015. "Generation of typical meteorological year for different climates of Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 144-151.
- Zhang, Wenhao & Li, Honglian & Wang, Mengli & Lv, Wen & Huang, Jin & Yang, Liu, 2024. "Enhancing typical Meteorological Year generation for diverse energy systems: A hybrid Sandia-machine learning approach," Renewable Energy, Elsevier, vol. 225(C).
- Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Jiaxiang Lei & Honglian Li & Chengwang Li & Minrui Xu, 2023. "A New Method for Determining Outdoor Humidity Ratio of Natatorium in Transition Season," Energies, MDPI, vol. 16(7), pages 1-17, March.
- Amin, Amin & Mourshed, Monjur, 2024. "Weather and climate data for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
- Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
- Cui, Can & Wang, Zhen & Cai, Bofeng & Peng, Sha & Wang, Yang & Xu, Chengdong, 2021. "Evolution-based CO2 emission baseline scenarios of Chinese cities in 2025," Applied Energy, Elsevier, vol. 281(C).
- Thobile Zikhathile & Harrison Atagana & Joseph Bwapwa & David Sawtell, 2022. "A Review of the Impact That Healthcare Risk Waste Treatment Technologies Have on the Environment," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
- Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Paulescu, Marius & Badescu, Viorel & Budea, Sanda & Dumitrescu, Alexandru, 2022. "Empirical sunshine-based models vs online estimators for solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
- Putra, I Dewa Gede Arya & Nimiya, Hideyo & Sopaheluwakan, Ardhasena & Kubota, Tetsu & Lee, Han Soo & Pradana, Radyan Putra & Alfata, Muhammad Nur Fajri & Perdana, Reza Bayu & Permana, Donaldi Sukma & , 2024. "Development of typical meteorological years based on quality control of datasets in Indonesia," Renewable Energy, Elsevier, vol. 221(C).
- Delia D’Agostino & Danny Parker & Ilenia Epifani & Dru Crawley & Linda Lawrie, 2022. "Datasets on Energy Simulations of Standard and Optimized Buildings under Current and Future Weather Conditions across Europe," Data, MDPI, vol. 7(5), pages 1-18, May.
- Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
- Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
More about this item
Keywords
Hourly solar radiation; Typical meteorological year; Convolutional neural network; ResNet network; Building energy simulation; Photovoltaic power generation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s036054422303044x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.