IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp1522-1534.html
   My bibliography  Save this article

Energy production planning of a network of micro combined heat and power generators

Author

Listed:
  • Kopanos, Georgios M.
  • Georgiadis, Michael C.
  • Pistikopoulos, Efstratios N.

Abstract

A promising and shortly emerging energy supply chain network based on residential-scale microgeneration through micro combined heat and power systems is proposed, modeled and optimized in this work. Interchange of electrical energy can take place among the members of this domestic microgrid, which is connected to the main electrical grid for potential power interchange with it. A mathematical programming framework is developed for the operational planning of such energy supply chain networks. The minimization of total costs (including microgeneration system’s startup and operating costs as well as electricity production revenue, sales, and purchases), under full heat demand satisfaction, constitutes the objective function in this study. Additionally, an alternative microgrid structure that allows the heat interchange within subgroups of the overall microgrid is proposed, and the initial mathematical programming formulation is extended to deal with this new aspect. An illustrative example is presented in order to highlight the particular significance of selecting a proper optimization goal that thoroughly takes into account the major operational, technical and economic driven factors of the problem in question. Also, a number of real-world size case studies are used to illustrate the efficiency, applicability and the potential benefits of the microgeneration energy supply chain networks suggested in this study. Finally, some concluding remarks are drawn and potential future research directions are identified.

Suggested Citation

  • Kopanos, Georgios M. & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "Energy production planning of a network of micro combined heat and power generators," Applied Energy, Elsevier, vol. 102(C), pages 1522-1534.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1522-1534
    DOI: 10.1016/j.apenergy.2012.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912006551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wakui, Tetsuya & Yokoyama, Ryohei & Shimizu, Ken-ichi, 2010. "Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems," Energy, Elsevier, vol. 35(2), pages 740-750.
    2. Bosman, M.G.C. & Bakker, V. & Molderink, A. & Hurink, J.L. & Smit, G.J.M., 2012. "Planning the production of a fleet of domestic combined heat and power generators," European Journal of Operational Research, Elsevier, vol. 216(1), pages 140-151.
    3. Zhu, Y. & Huang, G.H. & Li, Y.P. & He, L. & Zhang, X.X., 2011. "An interval full-infinite mixed-integer programming method for planning municipal energy systems - A case study of Beijing," Applied Energy, Elsevier, vol. 88(8), pages 2846-2862, August.
    4. Watson, Jim & Sauter, Raphael & Bahaj, Bakr & James, Patrick & Myers, Luke & Wing, Robert, 2008. "Domestic micro-generation: Economic, regulatory and policy issues for the UK," Energy Policy, Elsevier, vol. 36(8), pages 3085-3096, August.
    5. Peacock, A.D. & Newborough, M., 2006. "Impact of micro-combined heat-and-power systems on energy flows in the UK electricity supply industry," Energy, Elsevier, vol. 31(12), pages 1804-1818.
    6. Szklo, Alexandre Salem & Tolmasquim, Maurício Tiomno, 2001. "Strategic cogeneration -- fresh horizons for the development of cogeneration in Brazil," Applied Energy, Elsevier, vol. 69(4), pages 257-268, August.
    7. Monteiro, Eliseu & Moreira, Nuno Afonso & Ferreira, Sérgio, 2009. "Planning of micro-combined heat and power systems in the Portuguese scenario," Applied Energy, Elsevier, vol. 86(3), pages 290-298, March.
    8. Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
    9. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    10. Barbieri, Enrico Saverio & Spina, Pier Ruggero & Venturini, Mauro, 2012. "Analysis of innovative micro-CHP systems to meet household energy demands," Applied Energy, Elsevier, vol. 97(C), pages 723-733.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lombardi, K. & Ugursal, V.I. & Beausoleil-Morrison, I., 2010. "Proposed improvements to a model for characterizing the electrical and thermal energy performance of Stirling engine micro-cogeneration devices based upon experimental observations," Applied Energy, Elsevier, vol. 87(10), pages 3271-3282, October.
    2. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    3. Guillermo Rey & Carlos Ulloa & Jose Luis Míguez & Elena Arce, 2016. "Development of an ICE-Based Micro-CHP System Based on a Stirling Engine; Methodology for a Comparative Study of its Performance and Sensitivity Analysis in Recreational Sailing Boats in Different Euro," Energies, MDPI, vol. 9(4), pages 1-14, March.
    4. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    5. Welsch, M. & Hermann, S. & Howells, M. & Rogner, H.H. & Young, C. & Ramma, I. & Bazilian, M. & Fischer, G. & Alfstad, T. & Gielen, D. & Le Blanc, D. & Röhrl, A. & Steduto, P. & Müller, A., 2014. "Adding value with CLEWS – Modelling the energy system and its interdependencies for Mauritius," Applied Energy, Elsevier, vol. 113(C), pages 1434-1445.
    6. Hammond, Geoffrey P. & Harajli, Hassan A. & Jones, Craig I. & Winnett, Adrian B., 2012. "Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations," Energy Policy, Elsevier, vol. 40(C), pages 219-230.
    7. Caresana, Flavio & Brandoni, Caterina & Feliciotti, Petro & Bartolini, Carlo Maria, 2011. "Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator," Applied Energy, Elsevier, vol. 88(3), pages 659-671, March.
    8. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2013. "Motivations and barriers associated with adopting microgeneration energy technologies in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 655-666.
    9. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    10. Geoffrey P. Hammond & Adam A. Titley, 2022. "Small-Scale Combined Heat and Power Systems: The Prospects for a Distributed Micro-Generator in the ‘Net-Zero’ Transition within the UK," Energies, MDPI, vol. 15(16), pages 1-32, August.
    11. Spyridon Karytsas & Ioannis Vardopoulos & Eleni Theodoropoulou, 2019. "Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    12. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
    13. Walek, Tomasz T., 2023. "New model of cost allocation for micro-cogeneration systems applied in multi-family buildings — with standard and new-type multi-source energy meters," Energy, Elsevier, vol. 262(PB).
    14. Saunders, R.W. & Gross, R.J.K. & Wade, J., 2012. "Can premium tariffs for micro-generation and small scale renewable heat help the fuel poor, and if so, how? Case studies of innovative finance for community energy schemes in the UK," Energy Policy, Elsevier, vol. 42(C), pages 78-88.
    15. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    16. Fragaki, Aikaterini & Andersen, Anders N., 2011. "Conditions for aggregation of CHP plants in the UK electricity market and exploration of plant size," Applied Energy, Elsevier, vol. 88(11), pages 3930-3940.
    17. Boon, Frank Pieter & Dieperink, Carel, 2014. "Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development," Energy Policy, Elsevier, vol. 69(C), pages 297-307.
    18. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    19. Monteiro, Eliseu & Moreira, Nuno Afonso & Ferreira, Sérgio, 2009. "Planning of micro-combined heat and power systems in the Portuguese scenario," Applied Energy, Elsevier, vol. 86(3), pages 290-298, March.
    20. Haupt, Axel & Müller, Karsten, 2017. "Integration of a LOHC storage into a heat-controlled CHP system," Energy, Elsevier, vol. 118(C), pages 1123-1130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1522-1534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.