IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1066-d143326.html
   My bibliography  Save this article

Energy Management for Community Energy Network with CHP Based on Cooperative Game

Author

Listed:
  • Xiaofeng Liu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    These authors contributed equally to this work.)

  • Shijun Wang

    (Gansu Electric Power Economy and Technology Research Institute, Lanzhou 730050, China
    These authors contributed equally to this work.)

  • Jiawen Sun

    (State Grid Xinjiang Electric Power Corporation Economic Research Institute, Urumchi 830002, China
    These authors contributed equally to this work.)

Abstract

Integrated energy system (IES) has received increasing attention in micro grid due to the high energy efficiency and low emission of carbon dioxide. Based on the technology of combined heat and power (CHP), this paper develops a novel operation mechanism with community micro turbine and shared energy storage system (ESS) for energy management of prosumers. In the proposed framework, micro-grid operator (MGO) equipped with micro turbine and ESS provides energy selling business and ESS leasing business for prosumers. Prosumers can make energy trading with public grid and MGO, and ESS will be shared among prosumers when they pay for the rent to MGO. Based on such framework, we adopt a cooperative game for prosumers to determine optimal energy trading strategies from MGO and public grid for the next day. Concretely, a cooperative game model is formulated to search the optimal strategies aiming at minimizing the daily cost of coalition, and then a bilateral Shapley value (BSV) is proposed to solve the allocation problem of coalition’s cost among prosumers. To verify the effectiveness of proposed energy management framework, a practical example is conducted with a community energy network containing MGO and 10 residential buildings. Simulation results show that the proposed scheme is able to provide financial benefits to all prosumers, while providing peak load leveling for the grid.

Suggested Citation

  • Xiaofeng Liu & Shijun Wang & Jiawen Sun, 2018. "Energy Management for Community Energy Network with CHP Based on Cooperative Game," Energies, MDPI, vol. 11(5), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1066-:d:143326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Chengshan & Liu, Yixin & Li, Xialin & Guo, Li & Qiao, Lei & Lu, Hai, 2016. "Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system," Energy, Elsevier, vol. 97(C), pages 90-104.
    2. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    3. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    4. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    5. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    6. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    7. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    8. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
    9. Bingtuan Gao & Xiaofeng Liu & Wenhu Zhang & Yi Tang, 2015. "Autonomous Household Energy Management Based on a Double Cooperative Game Approach in the Smart Grid," Energies, MDPI, vol. 8(7), pages 1-18, July.
    10. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    11. Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    2. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    3. Liaqat Ali & S. M. Muyeen & Hamed Bizhani & Arindam Ghosh, 2019. "Comparative Study on Game-Theoretic Optimum Sizing and Economical Analysis of a Networked Microgrid," Energies, MDPI, vol. 12(20), pages 1-14, October.
    4. He Huang & DaPeng Liang & Zhen Tong, 2018. "Integrated Energy Micro-Grid Planning Using Electricity, Heating and Cooling Demands," Energies, MDPI, vol. 11(10), pages 1-20, October.
    5. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    6. Xue, Jian & Guo, Na & Zhao, Laijun & Zhu, Di & Ji, Xiaoqin, 2020. "A cooperative inter-provincial model for energy conservation based on futures trading," Energy, Elsevier, vol. 212(C).
    7. Fernando V. Cerna & Mahdi Pourakbari-Kasmaei & Luizalba S. S. Pinheiro & Ehsan Naderi & Matti Lehtonen & Javier Contreras, 2021. "Intelligent Energy Management in a Prosumer Community Considering the Load Factor Enhancement," Energies, MDPI, vol. 14(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage," Energy, Elsevier, vol. 155(C), pages 620-629.
    2. Iturriaga, E. & Aldasoro, U. & Campos-Celador, A. & Sala, J.M., 2017. "A general model for the optimization of energy supply systems of buildings," Energy, Elsevier, vol. 138(C), pages 954-966.
    3. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
    4. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    5. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    6. Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
    7. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    8. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    9. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    10. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    11. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
    12. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    13. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    14. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    15. Alberto Fichera & Mattia Frasca & Rosaria Volpe, 2020. "A cost-based approach for evaluating the impact of a network of distributed energy systems on the centralized energy supply," Energy & Environment, , vol. 31(1), pages 77-87, February.
    16. Haoran Ju & Yongxue Wang & Yiwu Feng & Lijun Zheng, 2024. "Numerical Study on Peak Shaving Performance of Combined Heat and Power Unit Assisted by Heating Storage in Long-Distance Pipelines Scheduled by Particle Swarm Optimization Method," Energies, MDPI, vol. 17(2), pages 1-18, January.
    17. Karmellos, M. & Georgiou, P.N. & Mavrotas, G., 2019. "A comparison of methods for the optimal design of Distributed Energy Systems under uncertainty," Energy, Elsevier, vol. 178(C), pages 318-333.
    18. Melchiorre Casisi & Stefano Costanzo & Piero Pinamonti & Mauro Reini, 2018. "Two-Level Evolutionary Multi-objective Optimization of a District Heating System with Distributed Cogeneration," Energies, MDPI, vol. 12(1), pages 1-23, December.
    19. Zhao Luo & Wei Gu & Yong Sun & Xiang Yin & Yiyuan Tang & Xiaodong Yuan, 2016. "Performance Analysis of the Combined Operation of Interconnected-BCCHP Microgrids in China," Sustainability, MDPI, vol. 8(10), pages 1-20, September.
    20. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1066-:d:143326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.