IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923009327.html
   My bibliography  Save this article

Direct and efficient conversion of antibiotic wastewater into electricity by redox flow fuel cell based on photothermal synergistic effect

Author

Listed:
  • Yang, Hao
  • Zu, Xihong
  • Lin, Jinxin
  • Wu, Mengnuo
  • Chen, Liheng
  • Jiang, Xiaobin
  • Xie, Zixin
  • Ye, Tongxin
  • Yang, Dongjie
  • Qiu, Xueqing

Abstract

Antibiotic wastewater has caused serious environmental pollution and is hard to utilize. Thus, it is urgent to develop a green and efficient technology for treating antibiotic wastewater and effective utilization. The reported fuel cell technologies can degrade antibiotics and generate electricity simultaneously, but their cell performance is very bad and difficult application. Herein, we reported a new environment-friendly and low-cost redox flow fuel cell (RFFC) based on the photothermal synergistic effect to convert antibiotic wastewater into electricity directly and efficiently at low temperature. The developed RFFC can output the maximum power density of 98.2 mW cm−2 which is 545 times of the reported microbial fuel cells and 270 times of the reported photocatalytic fuel cells. And the photothermal degradation method is better than the thermal degradation and photo degradation. Furthermore, it can discharge stably >2.5 h at high current density of 2 A cm−2 and successfully power a small electrical fan (1.5 V). The reaction mechanism is studied by the density functional theory (DFT) calculation, and the results show that FeCl3 molecules as photocatalyst and electron carriers of the RFFC can complex with antibiotics to greatly reduce the energy gap between HOMO and LUMO of antibiotics, which make the antibiotic molecules easy to be excited to unstable excited state by visible and UV light (λ < 733 nm) and greatly beneficial for their photothermal degradation. Besides, when using cefuroxime sodium wastewater as the model wastewater, HS-GC–MS results show that cefuroxime sodium can be completely degraded into non-toxic micro molecules after generating electricity. This work shows promising potential application for high-value utilization of antibiotic wastewater and generating clean electricity.

Suggested Citation

  • Yang, Hao & Zu, Xihong & Lin, Jinxin & Wu, Mengnuo & Chen, Liheng & Jiang, Xiaobin & Xie, Zixin & Ye, Tongxin & Yang, Dongjie & Qiu, Xueqing, 2023. "Direct and efficient conversion of antibiotic wastewater into electricity by redox flow fuel cell based on photothermal synergistic effect," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009327
    DOI: 10.1016/j.apenergy.2023.121568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.
    2. Zhang, Zhe & Liu, Congmin & Liu, Wei & Cui, Yong & Du, Xu & Xu, Dong & Guo, Hua & Deng, Yulin, 2017. "Innovative design of coal utilization – A green pathway for direct conversion of coal to electricity through flow fuel cell technology," Applied Energy, Elsevier, vol. 200(C), pages 226-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhe & Liu, Congmin & Liu, Wei & Du, Xu & Cui, Yong & Gong, Jian & Guo, Hua & Deng, Yulin, 2017. "Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell," Energy, Elsevier, vol. 141(C), pages 1019-1026.
    2. Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Wei, L. & Wu, M.C. & Zhao, T.S. & Zeng, Y.K. & Ren, Y.X., 2018. "An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage," Applied Energy, Elsevier, vol. 215(C), pages 98-105.
    4. Shen, Ruixia & Jiang, Yong & Ge, Zheng & Lu, Jianwen & Zhang, Yuanhui & Liu, Zhidan & Ren, Zhiyong Jason, 2018. "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation," Applied Energy, Elsevier, vol. 212(C), pages 509-515.
    5. Luo, Shuai & Jain, Akshay & Aguilera, Anibal & He, Zhen, 2017. "Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell," Applied Energy, Elsevier, vol. 206(C), pages 879-886.
    6. Richard Ochieng & Alemayehu Gebremedhin & Shiplu Sarker, 2022. "Integration of Waste to Bioenergy Conversion Systems: A Critical Review," Energies, MDPI, vol. 15(7), pages 1-22, April.
    7. Birol Kılkış & Şiir Kılkış, 2018. "Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus," Energies, MDPI, vol. 11(5), pages 1-33, May.
    8. Liang, Dandan & Zhang, Lijuan & He, Weihua & Li, Chao & Liu, Junfeng & Liu, Shaoqin & Lee, Hyung-Sool & Feng, Yujie, 2020. "Efficient hydrogen recovery with CoP-NF as cathode in microbial electrolysis cells," Applied Energy, Elsevier, vol. 264(C).
    9. Wang, Bin & Wang, Shuang-Fei & Lam, Su Shiung & Sonne, Christian & Yuan, Tong-Qi & Song, Guo-Yong & Sun, Run-Cang, 2020. "A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    11. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.