IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120306729.html
   My bibliography  Save this article

A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications

Author

Listed:
  • Wang, Bin
  • Wang, Shuang-Fei
  • Lam, Su Shiung
  • Sonne, Christian
  • Yuan, Tong-Qi
  • Song, Guo-Yong
  • Sun, Run-Cang

Abstract

Lignin, which can be recycled from bioethanol and paper production wastes, is the second largest renewable resource. However, studies and applications on sustainable upgrading of lignin are extremely limited and most of them only focus on its combustion to obtain energy. The abundance of reactive groups in lignin makes it a potential feedstock for the production of sustainable low carbon footprint value-added materials. Among them, the preparation of flocculants from lignin has attracted much attention. This paper systematically reviews recent progress of low carbon footprint lignin-based flocculants. The modification methods for the production of lignin-based flocculants, Mannich, sulfonation, carboxylation, crosslinking and graft copolymerization, and the flocculation mechanisms in wastewater treatment are discussed emphatically. Moreover, the factors affecting the flocculation performance of lignin-based flocculants, including internal factors, such as charge density, molecular weight, conformation, and external factors, such as dosage, treatment time, wastewater pH, and temperature are discussed in detail, which are conducive to design, production and application of lignin-based flocculants for lower carbon footprint. Furthermore, we critically point out the current deficiencies of the lignin-based flocculants and the challenges facing commercialization, then we propose the corresponding possible solutions. The production and application of high-efficiency lignin-based flocculants are of great significance for resource conservation, low carbon footprint, and wastewater reuse.

Suggested Citation

  • Wang, Bin & Wang, Shuang-Fei & Lam, Su Shiung & Sonne, Christian & Yuan, Tong-Qi & Song, Guo-Yong & Sun, Run-Cang, 2020. "A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306729
    DOI: 10.1016/j.rser.2020.110384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuba, Eyasu Shumbulo & Kifle, Demeke, 2018. "Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 743-755.
    2. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    3. Barros, Ana I. & Gonçalves, Ana L. & Simões, Manuel & Pires, José C.M., 2015. "Harvesting techniques applied to microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1489-1500.
    4. Ha, Jeong-Myeong & Hwang, Kyung-Ran & Kim, Young-Min & Jae, Jungho & Kim, Kwang Ho & Lee, Hyung Won & Kim, Jae-Young & Park, Young-Kwon, 2019. "Recent progress in the thermal and catalytic conversion of lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 422-441.
    5. Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.
    6. Pires, J.C.M. & Alvim-Ferraz, M.C.M. & Martins, F.G. & Simões, M., 2012. "Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3043-3053.
    7. Chio, Chonlong & Sain, Mohini & Qin, Wensheng, 2019. "Lignin utilization: A review of lignin depolymerization from various aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 232-249.
    8. Chen, Zhu & Wan, Caixia, 2017. "Biological valorization strategies for converting lignin into fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 610-621.
    9. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    10. Okoro, Victor & Azimov, Ulugbek & Munoz, Jose & Hernandez, Hector H. & Phan, Anh N., 2019. "Microalgae cultivation and harvesting: Growth performance and use of flocculants - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Liu, Zhi-Hua & Le, Rosemary K. & Kosa, Matyas & Yang, Bin & Yuan, Joshua & Ragauskas, Arthur J., 2019. "Identifying and creating pathways to improve biological lignin valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 349-362.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Gwon Woo & Gong, Gyeongtaek & Joo, Jeong Chan & Song, Jinju & Lee, Jiye & Lee, Joon-Pyo & Kim, Hee Taek & Ryu, Mi Hee & Sirohi, Ranjna & Zhuang, Xinshu & Min, Kyoungseon, 2022. "Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Li, Shuangxi & Hu, Tianyi & Xu, Yanzhe & Wang, Jingyi & Chu, Ruoyu & Yin, Zhihong & Mo, Fan & Zhu, Liandong, 2020. "A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    7. Yin, Zhihong & Chu, Ruoyu & Zhu, Liandong & Li, Shuangxi & Mo, Fan & Hu, Dan & Liu, Chenchen, 2021. "Application of chitosan-based flocculants to harvest microalgal biomass for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Shokravi, Zahra & Shokravi, Hoofar & Atabani, A.E. & Lau, Woei Jye & Chyuan, Ong Hwai & Ismail, Ahmad Fauzi, 2022. "Impacts of the harvesting process on microalgae fatty acid profiles and lipid yields: Implications for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Li, Fanghua & Srivatsa, Srikanth Chakravartula & Bhattacharya, Sankar, 2019. "A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 481-497.
    10. Zhou, Wenguang & Wang, Jinghan & Chen, Paul & Ji, Chengcheng & Kang, Qiuyun & Lu, Bei & Li, Kun & Liu, Jin & Ruan, Roger, 2017. "Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1163-1175.
    11. Liu, Ruo-Ying & Lan, Hai-Na & Liu, Zhi-Hua & Li, Bing-Zhi & Yuan, Ying-Jin, 2024. "Microbial valorization of lignin toward coumarins: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    13. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    14. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    15. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    16. Ferreira, G.F. & Ríos Pinto, L.F. & Maciel Filho, R. & Fregolente, L.V., 2019. "A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 448-466.
    17. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    18. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    20. Mashhadikhan, Samaneh & Ahmadi, Reyhane & Ebadi Amooghin, Abtin & Sanaeepur, Hamidreza & Aminabhavi, Tejraj M. & Rezakazemi, Mashallah, 2024. "Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.