IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp1581-1593.html
   My bibliography  Save this article

Land use structure and emission intensity at regional scale: A case study at the middle reach of the Heihe River basin

Author

Listed:
  • Wang, Zhan
  • Deng, Xiangzheng
  • Bai, Yuping
  • Chen, Jiancheng
  • Zheng, Wentang

Abstract

Global mitigation of greenhouse gas (GHG) emission targets to regional solution at different scales with structural effects. Because local ecosystem service has different functions to influence regional environment, it is unclear that land use structural effects on lowering emission intensity and mitigating air pollution, and it is debatable that the efficiency of mitigation of GHG emission can be improved by increasing what kind of ecological infrastructure at regional scale. We propose a systematic methodology on identification of trade-offs among structural impacts of land use change on emission intensity at regional scale through both qualitatively and quantitatively statistical analysis to clarify impacts of different land use on the mitigation of emission intensity. In particular to a region with some distinct constraints of natural resources, regional planning has to rely on scientific solutions for bridging the gap of emission mitigation target among multi-levels of administrations and at same time enhancing the optimal allocation of natural resource. In this case study, we qualitatively analyze the principle component among impact factors in a regional socio-economic-ecological system of Zhangye City (where is located at the middle reach of the Heihe River Basin) during 1980s–2010s, and quantitatively analyze the relationship between land use structure and emission intensity with controlling the effects of air contaminations. The analytical results prove that forest land has statistically significant impacts on the mitigation of emission intensity, more importantly, there are no statistical significant evidences showing that cultivated land and wetland have the same functions. It indicates that to identify key issues from those mixed impacts of land use structure at regional scale determines to promote an optimal path of natural resource allocation for reducing the GHG emission and air contaminations. It implies that mitigation of GHG sorely needs to take land use structure changes into consideration of the systematic research for scientifically improving regional planning and sustainable development.

Suggested Citation

  • Wang, Zhan & Deng, Xiangzheng & Bai, Yuping & Chen, Jiancheng & Zheng, Wentang, 2016. "Land use structure and emission intensity at regional scale: A case study at the middle reach of the Heihe River basin," Applied Energy, Elsevier, vol. 183(C), pages 1581-1593.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1581-1593
    DOI: 10.1016/j.apenergy.2016.09.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916314118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.09.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiangzheng Deng & Fan Zhang & Zhan Wang & Xing Li & Tao Zhang, 2014. "An Extended Input Output Table Compiled for Analyzing Water Demand and Consumption at County Level in China," Sustainability, MDPI, vol. 6(6), pages 1-20, May.
    2. Tian, Yishui & Zhao, Lixin & Meng, Haibo & Sun, Liying & Yan, Jinyue, 2009. "Estimation of un-used land potential for biofuels development in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 77-85, November.
    3. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    4. Tol, Richard S.J., 2014. "Quantifying the consensus on anthropogenic global warming in the literature: A re-analysis," Energy Policy, Elsevier, vol. 73(C), pages 701-705.
    5. Feng Wu & Jinyan Zhan & Qian Zhang & Zhongxiao Sun & Zhan Wang, 2014. "Evaluating Impacts of Industrial Transformation on Water Consumption in the Heihe River Basin of Northwest China," Sustainability, MDPI, vol. 6(11), pages 1-14, November.
    6. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    7. Peterson, Thomas D. & Rose, Adam Z., 2006. "Reducing conflicts between climate policy and energy policy in the US: The important role of the states," Energy Policy, Elsevier, vol. 34(5), pages 619-631, March.
    8. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    9. Burke, M. & Craxton, M. & Kolstad, C.D. & Onda, C. & Allcott, H. & Baker, E. & Barrage, L. & Carson, R. & Gillingham, K. & Graff-Zivin, J. & Greenstone, M. & Hallegatte, S. & Hanemann, W.M. & Heal, G., 2016. "Opportunities for advances in climate change economics," ISU General Staff Papers 3565, Iowa State University, Department of Economics.
    10. Stern, David I. & Common, Michael S. & Barbier, Edward B., 1996. "Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development," World Development, Elsevier, vol. 24(7), pages 1151-1160, July.
    11. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    12. Yu Liu & Hongwei Xiao & Precious Zikhali & Yingkang Lv, 2014. "Carbon Emissions in China: A Spatial Econometric Analysis at the Regional Level," Sustainability, MDPI, vol. 6(9), pages 1-19, September.
    13. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    14. He, Xiaoyi & Wu, Ye & Zhang, Shaojun & Tamor, Michael A. & Wallington, Timothy J. & Shen, Wei & Han, Weijian & Fu, Lixin & Hao, Jiming, 2016. "Individual trip chain distributions for passenger cars: Implications for market acceptance of battery electric vehicles and energy consumption by plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 180(C), pages 650-660.
    15. Zhang, Kuangyuan & Kleit, Andrew N., 2016. "Mining rate optimization considering the stockpiling: A theoretical economics and real option model," Resources Policy, Elsevier, vol. 47(C), pages 87-94.
    16. Babiker, Mustafa H., 2005. "Climate change policy, market structure, and carbon leakage," Journal of International Economics, Elsevier, vol. 65(2), pages 421-445, March.
    17. Qin Jin & Xiangzheng Deng & Zhan Wang & Chenchen Shi & Xing Li, 2014. "Analysis and Projection of the Relationship between Industrial Structure and Land Use Structure in China," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    18. Njakou Djomo, S. & El Kasmioui, O. & De Groote, T. & Broeckx, L.S. & Verlinden, M.S. & Berhongaray, G. & Fichot, R. & Zona, D. & Dillen, S.Y. & King, J.S. & Janssens, I.A. & Ceulemans, R., 2013. "Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation," Applied Energy, Elsevier, vol. 111(C), pages 862-870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinyan Zhan & Fan Zhang & Zhihui Li & Yue Zhang & Wei Qi, 2020. "Evaluation of food security based on DEA method: a case study of Heihe River Basin," Annals of Operations Research, Springer, vol. 290(1), pages 697-706, July.
    2. Wang, Ying & Deng, Xiangzheng & Zhang, Hongwei & Liu, Yujie & Yue, Tianxiang & Liu, Gang, 2022. "Energy endowment, environmental regulation, and energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. Jin, Gui & Guo, Baishu & Deng, Xiangzheng, 2020. "Is there a decoupling relationship between CO2 emission reduction and poverty alleviation in China?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    4. Liu, Yujie & Zhang, Jie & Qin, Ya, 2020. "How global warming alters future maize yield and water use efficiency in China," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    5. Shiguang Peng & Le Wang & Lei Xu, 2023. "Impact of the Marketization of Industrial Land Transfer on Regional Carbon Emission Intensity: Evidence from China," Land, MDPI, vol. 12(5), pages 1-20, April.
    6. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    7. Chen, Jiandong & Gao, Ming & Mangla, Sachin Kumar & Song, Malin & Wen, Jie, 2020. "Effects of technological changes on China's carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Xia, Chuyu & Chen, Bin, 2020. "Urban land-carbon nexus based on ecological network analysis," Applied Energy, Elsevier, vol. 276(C).
    9. Wang, Chao & Zhan, Jinyan & Xin, Zhongling, 2020. "Comparative analysis of urban ecological management models incorporating low-carbon transformation," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    10. Ruimin Yin & Zhanqi Wang & Ji Chai & Yunxiao Gao & Feng Xu, 2022. "The Evolution and Response of Space Utilization Efficiency and Carbon Emissions: A Comparative Analysis of Spaces and Regions," Land, MDPI, vol. 11(3), pages 1-21, March.
    11. Liu, Kai & Xue, Mingyue & Peng, Mengjie & Wang, Chengxin, 2020. "Impact of spatial structure of urban agglomeration on carbon emissions: An analysis of the Shandong Peninsula, China," Technological Forecasting and Social Change, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anver C. Sadath & Rajesh H. Acharya, 2019. "Economic growth and environmental degradation: How to balance the interests of developed and developing countries," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 25-47.
    2. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    3. Lars Sorge & Anne Neumann, 2017. "The Nexus of CO2 Emissions, Energy Consumption, Economic Growth, and Trade-Openness in WTO Countries," Discussion Papers of DIW Berlin 1699, DIW Berlin, German Institute for Economic Research.
    4. Dutta, Champa Bati & Das, Debasish Kumar, 2016. "Does disaggregated CO2 emission matter for growth? Evidence from thirty countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 825-833.
    5. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    6. Bradford David F. & Fender Rebecca A & Shore Stephen H. & Wagner Martin, 2005. "The Environmental Kuznets Curve: Exploring a Fresh Specification," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-28, June.
    7. Ghimire, Narishwar & Woodward, Richard T., 2013. "Under- and over-use of pesticides: An international analysis," Ecological Economics, Elsevier, vol. 89(C), pages 73-81.
    8. Jha, Raghbendra & Murthy, K. V. Bhanu, 2003. "An inverse global environmental Kuznets curve," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 352-368, June.
    9. Shuaibing Zhang & Kaixu Zhao & Shuoyang Ji & Yafang Guo & Fengqi Wu & Jingxian Liu & Fei Xie, 2022. "Evolution Characteristics, Eco-Environmental Response and Influencing Factors of Production-Living-Ecological Space in the Qinghai–Tibet Plateau," Land, MDPI, vol. 11(7), pages 1-26, July.
    10. G. Mythili & Shibashis Mukherjee, 2011. "Examining Environmental Kuznets Curve for river effluents in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 627-640, June.
    11. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    12. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    13. Andreoni, James & Levinson, Arik, 2001. "The simple analytics of the environmental Kuznets curve," Journal of Public Economics, Elsevier, vol. 80(2), pages 269-286, May.
    14. Costantini, Valeria & Monni, Salvatore, 2008. "Environment, human development and economic growth," Ecological Economics, Elsevier, vol. 64(4), pages 867-880, February.
    15. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    16. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    17. Jaeger, William K. & Kolpin, Van, 2008. "The Environmental Kuznets Curve from Multiple Perspectives," Climate Change Modelling and Policy Working Papers 36760, Fondazione Eni Enrico Mattei (FEEM).
    18. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    19. Bjørnar Karlsen Kivedal, 2023. "Long run non-linearity in CO2 emissions: the I(2) cointegration model and the environmental Kuznets curve," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(4), pages 899-931, November.
    20. Luzzati, T. & Orsini, M., 2009. "Investigating the energy-environmental Kuznets curve," Energy, Elsevier, vol. 34(3), pages 291-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1581-1593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.