IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp768-776.html
   My bibliography  Save this article

A flexible model for economic operational management of grid battery energy storage

Author

Listed:
  • Fares, Robert L.
  • Webber, Michael E.

Abstract

To connect energy storage operational planning with real-time battery control, this paper integrates a dynamic battery model with an optimization program. First, we transform a behavioral circuit model designed to describe a variety of battery chemistries into a set of coupled nonlinear differential equations. Then, we discretize the differential equations to integrate the battery model with a GAMS (General Algebraic Modeling System) optimization program, which decides when the battery should charge and discharge to maximize its operating revenue. We demonstrate the capabilities of our model by applying it to lithium-ion (Li-ion) energy storage operating in Texas' restructured electricity market. By simulating 11 years of operation, we find that our model can robustly compute an optimal charge-discharge schedule that maximizes daily operating revenue without violating a battery's operating constraints. Furthermore, our results show there is significant variation in potential operating revenue from one day to the next. The revenue potential of Li-ion storage varies from approximately $0–1800/MWh of energy discharged, depending on the volatility of wholesale electricity prices during an operating day. Thus, it is important to consider the material degradation-related “cost” of performing a charge-discharge cycle in battery operational management, so that the battery only operates when revenue exceeds cost.

Suggested Citation

  • Fares, Robert L. & Webber, Michael E., 2014. "A flexible model for economic operational management of grid battery energy storage," Energy, Elsevier, vol. 78(C), pages 768-776.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:768-776
    DOI: 10.1016/j.energy.2014.10.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214012225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    2. He, Xian & Delarue, Erik & D'haeseleer, William & Glachant, Jean-Michel, 2011. "A novel business model for aggregating the values of electricity storage," Energy Policy, Elsevier, vol. 39(3), pages 1575-1585, March.
    3. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    4. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    5. Kazempour, S. Jalal & Moghaddam, M. Parsa & Haghifam, M.R. & Yousefi, G.R., 2009. "Electric energy storage systems in a market-based economy: Comparison of emerging and traditional technologies," Renewable Energy, Elsevier, vol. 34(12), pages 2630-2639.
    6. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    7. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Weber & Bin Lu, 2023. "An Open-Source Energy Arbitrage Model Involving Price Bands for Risk Hedging with Imperfect Price Signals," Energies, MDPI, vol. 17(1), pages 1-31, December.
    2. Roshandel, Ramin & Parhizkar, Tarannom, 2016. "Degradation based optimization framework for long term applications of energy systems, case study: Solid oxide fuel cell stacks," Energy, Elsevier, vol. 107(C), pages 172-181.
    3. Xiong, Rui & Huang, Jintao & Duan, Yanzhou & Shen, Weixiang, 2022. "Enhanced Lithium-ion battery model considering critical surface charge behavior," Applied Energy, Elsevier, vol. 314(C).
    4. Olaszi, Balint D. & Ladanyi, Jozsef, 2017. "Comparison of different discharge strategies of grid-connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 710-718.
    5. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island," Energy, Elsevier, vol. 90(P2), pages 1606-1617.
    6. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    7. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    8. Daming Zhou & Ke Zhang & Alexandre Ravey & Fei Gao & Abdellatif Miraoui, 2016. "Parameter Sensitivity Analysis for Fractional-Order Modeling of Lithium-Ion Batteries," Energies, MDPI, vol. 9(3), pages 1-26, February.
    9. Janghorban Esfahani, Iman & Ifaei, Pouya & Kim, Jinsoo & Yoo, ChangKyoo, 2016. "Design of Hybrid Renewable Energy Systems with Battery/Hydrogen storage considering practical power losses: A MEPoPA (Modified Extended-Power Pinch Analysis)," Energy, Elsevier, vol. 100(C), pages 40-50.
    10. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    11. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    13. Backe, Stian & Kara, Güray & Tomasgard, Asgeir, 2020. "Comparing individual and coordinated demand response with dynamic and static power grid tariffs," Energy, Elsevier, vol. 201(C).
    14. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    15. Saeid Esmaeili & Amjad Anvari-Moghaddam & Shahram Jadid & Josep M. Guerrero, 2018. "A Stochastic Model Predictive Control Approach for Joint Operational Scheduling and Hourly Reconfiguration of Distribution Systems," Energies, MDPI, vol. 11(7), pages 1-19, July.
    16. Kim, Wook-Won & Shin, Je-Seok & Kim, Sung-Yul & Kim, Jin-O., 2017. "Operation scheduling for an energy storage system considering reliability and aging," Energy, Elsevier, vol. 141(C), pages 389-397.
    17. Beatrice Marchi & Simone Zanoni & Marco Pasetti, 2019. "Multi-Period Newsvendor Problem for the Management of Battery Energy Storage Systems in Support of Distributed Generation," Energies, MDPI, vol. 12(23), pages 1-13, December.
    18. Shang, Ce & Srinivasan, Dipti & Reindl, Thomas, 2016. "Generation-scheduling-coupled battery sizing of stand-alone hybrid power systems," Energy, Elsevier, vol. 114(C), pages 671-682.
    19. Maheshwari, Arpit & Paterakis, Nikolaos G. & Santarelli, Massimo & Gibescu, Madeleine, 2020. "Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model," Applied Energy, Elsevier, vol. 261(C).
    20. Mustafa Cagatay Kocer & Ceyhun Cengiz & Mehmet Gezer & Doruk Gunes & Mehmet Aytac Cinar & Bora Alboyaci & Ahmet Onen, 2019. "Assessment of Battery Storage Technologies for a Turkish Power Network," Sustainability, MDPI, vol. 11(13), pages 1-33, July.
    21. Jalving, Jordan & Ghouse, Jaffer & Cortes, Nicole & Gao, Xian & Knueven, Bernard & Agi, Damian & Martin, Shawn & Chen, Xinhe & Guittet, Darice & Tumbalam-Gooty, Radhakrishna & Bianchi, Ludovico & Beat, 2023. "Beyond price taker: Conceptual design and optimization of integrated energy systems using machine learning market surrogates," Applied Energy, Elsevier, vol. 351(C).
    22. Nagasawa, Kazunori & Davidson, F. Todd & Lloyd, Alan C. & Webber, Michael E., 2019. "Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles," Applied Energy, Elsevier, vol. 235(C), pages 1001-1016.
    23. Firouz, Y. & Relan, R. & Timmermans, J.M. & Omar, N. & Van den Bossche, P. & Van Mierlo, J., 2016. "Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: Nonlinear characterization and non-parametric modeling," Energy, Elsevier, vol. 106(C), pages 602-617.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    2. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    3. Arcos-Vargas, Ángel & Canca, David & Núñez, Fernando, 2020. "Impact of battery technological progress on electricity arbitrage: An application to the Iberian market," Applied Energy, Elsevier, vol. 260(C).
    4. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    5. Metz, Dennis & Saraiva, João Tomé, 2018. "Simultaneous co-integration of multiple electrical storage applications in a consumer setting," Energy, Elsevier, vol. 143(C), pages 202-211.
    6. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    7. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    8. Ramteen Sioshansi & Paul Denholm & Thomas Jenkin, 2012. "Market and Policy Barriers to Deployment of Energy Storage," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    9. Fares, Robert L. & Meyers, Jeremy P. & Webber, Michael E., 2014. "A dynamic model-based estimate of the value of a vanadium redox flow battery for frequency regulation in Texas," Applied Energy, Elsevier, vol. 113(C), pages 189-198.
    10. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    11. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    12. Pedro Crespo Del Granado & Stein Wallace & Zhan Pang, 2016. "The impact of wind uncertainty on the strategic valuation of distributed electricity storage," Computational Management Science, Springer, vol. 13(1), pages 5-27, January.
    13. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    14. Ding, Jie & Xu, Yujie & Chen, Haisheng & Sun, Wenwen & Hu, Shan & Sun, Shuang, 2019. "Value and economic estimation model for grid-scale energy storage in monopoly power markets," Applied Energy, Elsevier, vol. 240(C), pages 986-1002.
    15. Dufo-López, Rodolfo, 2015. "Optimisation of size and control of grid-connected storage under real time electricity pricing conditions," Applied Energy, Elsevier, vol. 140(C), pages 395-408.
    16. Ikechi Emmanuel, Michael & Denholm, Paul, 2022. "A market feedback framework for improved estimates of the arbitrage value of energy storage using price-taker models," Applied Energy, Elsevier, vol. 310(C).
    17. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2017. "Profitability, risk, and financial modeling of energy storage in residential and large scale applications," Energy, Elsevier, vol. 119(C), pages 94-109.
    18. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    19. Barbry, Adrien & Anjos, Miguel F. & Delage, Erick & Schell, Kristen R., 2019. "Robust self-scheduling of a price-maker energy storage facility in the New York electricity market," Energy Economics, Elsevier, vol. 78(C), pages 629-646.
    20. Shafiee, Soroush & Zamani-Dehkordi, Payam & Zareipour, Hamidreza & Knight, Andrew M., 2016. "Economic assessment of a price-maker energy storage facility in the Alberta electricity market," Energy, Elsevier, vol. 111(C), pages 537-547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:768-776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.