IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v131y2014icp26-39.html
   My bibliography  Save this article

Improving energy efficiency for local energy systems

Author

Listed:
  • Oh, Se-Young
  • Binns, Michael
  • Yeo, Yeong-Koo
  • Kim, Jin-Kuk

Abstract

This study aims to develop a novel design method for reducing the energy consumption and CO2 emissions of local energy systems, simultaneously considering the recovery of industrial waste heat, and effectively dealing with the non-continuous nature of energy usage and heat recovery. A multi-period concept has been adopted for characterizing the change of heat demand and associated heat recovery in local energy systems which is used for targeting of the minimum energy consumption. In addition, techno-economic analysis is used to provide design guidelines for better heat integration. This design methodology also incorporates the impacts of heat storage and part-load performance of energy production equipment. Opportunities for utilization of low grade heat in process industries have been systematically considered for the minimization of energy generation in local energy systems together with the evaluation of the economic feasibility of such systems for integration of industrial low grade heat with local energy systems. Case studies are used to demonstrate the applicability and practicality of the heat integration methodology developed in this work, and to illustrate how a holistic approach can improve the overall energy efficiency of local energy systems.

Suggested Citation

  • Oh, Se-Young & Binns, Michael & Yeo, Yeong-Koo & Kim, Jin-Kuk, 2014. "Improving energy efficiency for local energy systems," Applied Energy, Elsevier, vol. 131(C), pages 26-39.
  • Handle: RePEc:eee:appene:v:131:y:2014:i:c:p:26-39
    DOI: 10.1016/j.apenergy.2014.06.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914005819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.06.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapil, Ankur & Bulatov, Igor & Smith, Robin & Kim, Jin-Kuk, 2012. "Process integration of low grade heat in process industry with district heating networks," Energy, Elsevier, vol. 44(1), pages 11-19.
    2. Silva Herran, Diego & Nakata, Toshihiko, 2012. "Design of decentralized energy systems for rural electrification in developing countries considering regional disparity," Applied Energy, Elsevier, vol. 91(1), pages 130-145.
    3. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    4. Sperling, Karl & Möller, Bernd, 2012. "End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective," Applied Energy, Elsevier, vol. 92(C), pages 831-842.
    5. Difs, Kristina & Bennstam, Marcus & Trygg, Louise & Nordenstam, Lena, 2010. "Energy conservation measures in buildings heated by district heating – A local energy system perspective," Energy, Elsevier, vol. 35(8), pages 3194-3203.
    6. Sanaei, Sayyed Mohammad & Nakata, Toshihiko, 2012. "Optimum design of district heating: Application of a novel methodology for improved design of community scale integrated energy systems," Energy, Elsevier, vol. 38(1), pages 190-204.
    7. Dalla Rosa, A. & Christensen, J.E., 2011. "Low-energy district heating in energy-efficient building areas," Energy, Elsevier, vol. 36(12), pages 6890-6899.
    8. Obara, Shin’ya & Morizane, Yuta & Morel, Jorge, 2013. "Study on method of electricity and heat storage planning based on energy demand and tidal flow velocity forecasts for a tidal microgrid," Applied Energy, Elsevier, vol. 111(C), pages 358-373.
    9. Piacentino, Antonio & Barbaro, Chiara, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part II: Analysis of the applicative potential," Applied Energy, Elsevier, vol. 111(C), pages 1222-1238.
    10. Chua, K.J. & Yang, W.M. & Er, S.S. & Ho, C.A., 2014. "Sustainable energy systems for a remote island community," Applied Energy, Elsevier, vol. 113(C), pages 1752-1763.
    11. Desideri, Umberto & Leonardi, Daniela & Arcioni, Livia & Sdringola, Paolo, 2012. "European project Educa-RUE: An example of energy efficiency paths in educational buildings," Applied Energy, Elsevier, vol. 97(C), pages 384-395.
    12. Tveit, Tor-Martin & Aaltola, Juha & Laukkanen, Timo & Laihanen, Mika & Fogelholm, Carl-Johan, 2006. "A framework for local and regional energy system integration between industry and municipalities—Case study UPM-Kymmene Kaukas," Energy, Elsevier, vol. 31(12), pages 2162-2175.
    13. Maes, Tom & Van Eetvelde, Greet & De Ras, Evelien & Block, Chantal & Pisman, Ann & Verhofstede, Bjorn & Vandendriessche, Frederik & Vandevelde, Lieven, 2011. "Energy management on industrial parks in Flanders," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1988-2005, May.
    14. Dalla Rosa, A. & Boulter, R. & Church, K. & Svendsen, S., 2012. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study," Energy, Elsevier, vol. 45(1), pages 960-974.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    2. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    3. Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
    4. Viholainen, Juha & Luoranen, Mika & Väisänen, Sanni & Niskanen, Antti & Horttanainen, Mika & Soukka, Risto, 2016. "Regional level approach for increasing energy efficiency," Applied Energy, Elsevier, vol. 163(C), pages 295-303.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    2. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Ziemele, Jelena & Pakere, Ieva & Blumberga, Dagnija, 2016. "The future competitiveness of the non-Emissions Trading Scheme district heating systems in the Baltic States," Applied Energy, Elsevier, vol. 162(C), pages 1579-1585.
    4. Jiang, X.S. & Jing, Z.X. & Li, Y.Z. & Wu, Q.H. & Tang, W.H., 2014. "Modelling and operation optimization of an integrated energy based direct district water-heating system," Energy, Elsevier, vol. 64(C), pages 375-388.
    5. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    6. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
    7. Delmastro, C. & Martinsson, F. & Dulac, J. & Corgnati, S.P., 2017. "Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm," Energy, Elsevier, vol. 138(C), pages 1209-1220.
    8. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    9. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    10. Baldvinsson, Ivar & Nakata, Toshihiko, 2016. "A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study," Energy, Elsevier, vol. 95(C), pages 155-174.
    11. Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
    12. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
    13. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    14. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
    15. Sanaei, Sayyed Mohammad & Nakata, Toshihiko, 2012. "Optimum design of district heating: Application of a novel methodology for improved design of community scale integrated energy systems," Energy, Elsevier, vol. 38(1), pages 190-204.
    16. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    17. Kipping, A. & Trømborg, E., 2017. "Modeling hourly consumption of electricity and district heat in non-residential buildings," Energy, Elsevier, vol. 123(C), pages 473-486.
    18. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    19. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
    20. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:131:y:2014:i:c:p:26-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.