IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1222-d329476.html
   My bibliography  Save this article

Costs and Profitability of Crops for Bioeconomy in the EU

Author

Listed:
  • Calliope Panoutsou

    (Centre for Environmental Policy, Imperial College London, 16-18 Prince’s Gardens, London SW7 1NE, UK)

  • Efthymia Alexopoulou

    (CRES, Centre for Renewable Energy Sources and Saving, 19th km Marathonos Avenue, 19009 Pikermi, Greece)

Abstract

The bioeconomy is the cornerstone of the EU’s policy for shifting economic and societal trends towards circularity and low carbon arrangements. Europe has several crops that can be used as raw materials for this purpose, however pressure on land which might displace other activities and industrial competition for cost efficient raw materials remains a challenge. Hence, ensuring good yielding capacity and examining the likelihood to produce more by exploiting low quality, unused land can present significant opportunities to increase sustainable, locally sourced supply and at the same time offer profitable solutions to both industry and the farmers. This paper estimates the production costs of fourteen crops (oil, sugar, starch and lignocellulosic) and analyses how their profitability can be influenced by yield increases and cultivation in low quality land. Results show that there are profitable options for all crops under current market prices and land types except for cases in countries where crop productivity is rather low to sustain farm incomes. The analysis confirms that Europe has plenty crop options as raw materials for bioeconomy. Decision makers however must ensure future research and policy support are oriented towards sustainable yield increases and accelerate rehabilitation of land that is unused and of low quality.

Suggested Citation

  • Calliope Panoutsou & Efthymia Alexopoulou, 2020. "Costs and Profitability of Crops for Bioeconomy in the EU," Energies, MDPI, vol. 13(5), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1222-:d:329476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sherrington, Chris & Moran, Dominic, 2010. "Modelling farmer uptake of perennial energy crops in the UK," Energy Policy, Elsevier, vol. 38(7), pages 3567-3578, July.
    2. Fazio, Simone & Barbanti, Lorenzo, 2014. "Energy and economic assessments of bio-energy systems based on annual and perennial crops for temperate and tropical areas," Renewable Energy, Elsevier, vol. 69(C), pages 233-241.
    3. Calliope Panoutsou, 2016. "The role of sustainable biomass in the heat market sector for EU27," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 430-450, July.
    4. Panoutsou, Calliope, 2007. "Socio-economic impacts of energy crops for heat generation in Northern Greece," Energy Policy, Elsevier, vol. 35(12), pages 6046-6059, December.
    5. Tate, Graham & Mbzibain, Aurelian & Ali, Shaukat, 2012. "A comparison of the drivers influencing farmers' adoption of enterprises associated with renewable energy," Energy Policy, Elsevier, vol. 49(C), pages 400-409.
    6. Hauk, Sebastian & Knoke, Thomas & Wittkopf, Stefan, 2014. "Economic evaluation of short rotation coppice systems for energy from biomass—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 435-448.
    7. Mantziaris, Stamatis & Iliopoulos, Constantine & Theodorakopoulou, Irini & Petropoulou, Eugenia, 2017. "Perennial energy crops vs. durum wheat in low input lands: Economic analysis of a Greek case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 789-800.
    8. Bocquého, G. & Jacquet, F., 2010. "The adoption of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences," Energy Policy, Elsevier, vol. 38(5), pages 2598-2607, May.
    9. Glithero, Neryssa J. & Wilson, Paul & Ramsden, Stephen J., 2013. "Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England," Applied Energy, Elsevier, vol. 107(C), pages 209-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calliope Panoutsou & David Chiaramonti, 2020. "Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy," Energies, MDPI, vol. 13(11), pages 1-22, May.
    2. Ioannis Gazoulis & Panagiotis Kanatas & Panayiota Papastylianou & Alexandros Tataridas & Efthymia Alexopoulou & Ilias Travlos, 2021. "Weed Management Practices to Improve Establishment of Selected Lignocellulosic Crops," Energies, MDPI, vol. 14(9), pages 1-16, April.
    3. Adenike Akinsemolu & Helen Onyeaka & Omololu Fagunwa & Adewale Henry Adenuga, 2023. "Toward a Resilient Future: The Promise of Microbial Bioeconomy," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    4. Václav Voltr & Martin Hruška & Luboš Nobilis, 2021. "Complex Valuation of Energy from Agricultural Crops including Local Conditions," Energies, MDPI, vol. 14(5), pages 1-25, March.
    5. Piotr Jurga & Efstratios Loizou & Stelios Rozakis, 2021. "Comparing Bioeconomy Potential at National vs. Regional Level Employing Input-Output Modeling," Energies, MDPI, vol. 14(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    2. Calliope Panoutsou & David Chiaramonti, 2020. "Socio-Economic Opportunities from Miscanthus Cultivation in Marginal Land for Bioenergy," Energies, MDPI, vol. 13(11), pages 1-22, May.
    3. Ge, Jiaqi & Sutherland, Lee-Ann & Polhill, J. Gary & Matthews, Keith & Miller, Dave & Wardell-Johnson, Douglas, 2017. "Exploring factors affecting on-farm renewable energy adoption in Scotland using large-scale microdata," Energy Policy, Elsevier, vol. 107(C), pages 548-560.
    4. Adams, P.W.R. & Lindegaard, K., 2016. "A critical appraisal of the effectiveness of UK perennial energy crops policy since 1990," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 188-202.
    5. Glithero, N.J. & Wilson, P. & Ramsden, S.J., 2015. "Optimal combinable and dedicated energy crop scenarios for marginal land," Applied Energy, Elsevier, vol. 147(C), pages 82-91.
    6. Barnes, A.P. & McMillan, J. & Sutherland, L.-A. & Hopkins, J. & Thomson, S.G., 2022. "Farmer intentional pathways for net zero carbon: Exploring the lock-in effects of forestry and renewables," Land Use Policy, Elsevier, vol. 112(C).
    7. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    8. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    9. Choi, Hyung Sik & Entenmann, Steffen K., 2019. "Land in the EU for perennial biomass crops from freed-up agricultural land: A sensitivity analysis considering yields, diet, market liberalization and world food prices," Land Use Policy, Elsevier, vol. 82(C), pages 292-306.
    10. Wilson, P. & Glithero, N.J. & Ramsden, S.J., 2014. "Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers," Energy Policy, Elsevier, vol. 74(C), pages 101-110.
    11. Ben Fradj, Nosra & Jayet, Pierre Alain & Rozakis, Stelios & Georganta, Eleni & Jędrejek, Anna, 2020. "Contribution of agricultural systems to the bioeconomy in Poland: Integration of willow in the context of a stylised CAP diversification," Land Use Policy, Elsevier, vol. 99(C).
    12. Cho, Seolhee & Kim, Jiyong, 2019. "Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops," Energy, Elsevier, vol. 185(C), pages 527-540.
    13. P. Mathiou & Stelios Rozakis & Rafal Pudelko & A. Faber & A. Petsakos, 2014. "Utility maximising supply response: the case of perennial biomass plantations in Poland," Working Papers 2014-3, Agricultural University of Athens, Department Of Agricultural Economics.
    14. Clancy, D. & Breen, J.P. & Thorne, F. & Wallace, M., 2012. "The influence of a Renewable Energy Feed in Tariff on the decision to produce biomass crops in Ireland," Energy Policy, Elsevier, vol. 41(C), pages 412-421.
    15. Zafeiriou, Eleni & Petridis, Konstantinos & Karelakis, Christos & Arabatzis, Garyfallos, 2016. "Optimal combination of energy crops under different policy scenarios; The case of Northern Greece," Energy Policy, Elsevier, vol. 96(C), pages 607-616.
    16. Testa, Riccardo & Foderà, Mario & Di Trapani, Anna Maria & Tudisca, Salvatore & Sgroi, Filippo, 2016. "Giant reed as energy crop for Southern Italy: An economic feasibility study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 558-564.
    17. Jensen, Kimberly L. & English, Burton C. & Clark, Christopher D. & Menard, R. Jamey, 2011. "Preferences for Marketing Arrangements by Potential Switchgrass Growers," Journal of Cooperatives, NCERA-210, vol. 25, pages 1-28.
    18. Wang, Zhanwu & Wang, Zhenfeng & Tahir, Nadeem & Wang, Heng & Li, Jin & Xu, Guangyin, 2020. "Study of synergetic development in straw power supply chain: Straw price and government subsidy as incentive," Energy Policy, Elsevier, vol. 146(C).
    19. Attila Jámbor & Áron Török, 2019. "The Economics of Arundo donax —A Systematic Literature Review," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    20. Damiete Emmanuel-Yusuf & Stephen Morse & Matthew Leach, 2017. "Resilience and Livelihoods in Supply Chains (RELISC): An Analytical Framework for the Development and Resilience of the UK Wood Fuel Sector," Sustainability, MDPI, vol. 9(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1222-:d:329476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.