IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v107y2017icp548-560.html
   My bibliography  Save this article

Exploring factors affecting on-farm renewable energy adoption in Scotland using large-scale microdata

Author

Listed:
  • Ge, Jiaqi
  • Sutherland, Lee-Ann
  • Polhill, J. Gary
  • Matthews, Keith
  • Miller, Dave
  • Wardell-Johnson, Douglas

Abstract

This paper uses large-scale micro data to identify key factors affecting the decision to adopt renewable energy generation (wind, solar and biomass) on farms in Scotland. We construct an integrated dataset that includes the compulsory agricultural census and farm structural survey that cover almost all farms in Scotland. In addition to farm owner demographics and farm business structures, we also assess the effect of diversification activities such as tourism and forestry, as well as the spatial, biophysical and geophysical attributes of the farms on the adoption decision. We find that diversified farms are more likely to adopt renewable energy, especially solar and biomass energy. Farms are also more likely to adopt renewable energy if they have high local demand for energy, or suitable conditions for renewable energy production. We find that biophysical factors such as the agricultural potential of farm land are important in adoption decisions. We identify adopter profiles for each type of renewable energy, and map the geographic location of potential adopters. We argue that renewable energy policy should be more integrated with farm diversification policy and farm support schemes. It should also be tailored for each type of renewable energy, for the potential adopter profiles of wind, solar and biomass energy all differ in farm characteristics and geographic distribution.

Suggested Citation

  • Ge, Jiaqi & Sutherland, Lee-Ann & Polhill, J. Gary & Matthews, Keith & Miller, Dave & Wardell-Johnson, Douglas, 2017. "Exploring factors affecting on-farm renewable energy adoption in Scotland using large-scale microdata," Energy Policy, Elsevier, vol. 107(C), pages 548-560.
  • Handle: RePEc:eee:enepol:v:107:y:2017:i:c:p:548-560
    DOI: 10.1016/j.enpol.2017.05.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517303099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.05.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sherrington, Chris & Moran, Dominic, 2010. "Modelling farmer uptake of perennial energy crops in the UK," Energy Policy, Elsevier, vol. 38(7), pages 3567-3578, July.
    2. Sherrington, Chris & Bartley, Justin & Moran, Dominic, 2008. "Farm-level constraints on the domestic supply of perennial energy crops in the UK," Energy Policy, Elsevier, vol. 36(7), pages 2504-2512, July.
    3. Mola-Yudego, Blas & Pelkonen, Paavo, 2008. "The effects of policy incentives in the adoption of willow short rotation coppice for bioenergy in Sweden," Energy Policy, Elsevier, vol. 36(8), pages 3052-3058, August.
    4. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    5. Tranter, R.B. & Swinbank, A. & Jones, P.J. & Banks, C.J. & Salter, A.M., 2011. "Assessing the potential for the uptake of on-farm anaerobic digestion for energy production in England," Energy Policy, Elsevier, vol. 39(5), pages 2424-2430, May.
    6. Ehlers, Melf-Hinrich & Sutherland, Lee-Ann, 2016. "Patterns of attention to renewable energy in the British farming press from 1980 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 959-973.
    7. Panoutsou, Calliope, 2008. "Bioenergy in Greece: Policies, diffusion framework and stakeholder interactions," Energy Policy, Elsevier, vol. 36(10), pages 3674-3685, October.
    8. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    9. del Río, Pablo & Unruh, Gregory, 2007. "Overcoming the lock-out of renewable energy technologies in Spain: The cases of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1498-1513, September.
    10. Tate, Graham & Mbzibain, Aurelian & Ali, Shaukat, 2012. "A comparison of the drivers influencing farmers' adoption of enterprises associated with renewable energy," Energy Policy, Elsevier, vol. 49(C), pages 400-409.
    11. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    12. Tudisca, Salvatore & Di Trapani, Anna Maria & Sgroi, Filippo & Testa, Riccardo & Squatrito, Riccardo, 2013. "Economic analysis of PV systems on buildings in Sicilian farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 691-701.
    13. Tomz, Michael & King, Gary & Zeng, Langche, 2003. "ReLogit: Rare Events Logistic Regression," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i02).
    14. Spertino, Filippo & Di Leo, Paolo & Cocina, Valeria, 2013. "Economic analysis of investment in the rooftop photovoltaic systems: A long-term research in the two main markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 531-540.
    15. Sutherland, Lee-Ann & Peter, Sarah & Zagata, Lukas, 2015. "Conceptualising multi-regime interactions: The role of the agriculture sector in renewable energy transitions," Research Policy, Elsevier, vol. 44(8), pages 1543-1554.
    16. Willis, Ken & Scarpa, Riccardo & Gilroy, Rose & Hamza, Neveen, 2011. "Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption," Energy Policy, Elsevier, vol. 39(10), pages 6021-6029, October.
    17. Bocquého, G. & Jacquet, F., 2010. "The adoption of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences," Energy Policy, Elsevier, vol. 38(5), pages 2598-2607, May.
    18. Faaij, Andre P.C., 2006. "Bio-energy in Europe: changing technology choices," Energy Policy, Elsevier, vol. 34(3), pages 322-342, February.
    19. Steven Ruggles, 2014. "Big Microdata for Population Research," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 287-297, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    2. Liu, Shiyu & Bie, Zhaohong & Lin, Jiang & Wang, Xifan, 2018. "Curtailment of renewable energy in Northwest China and market-based solutions," Energy Policy, Elsevier, vol. 123(C), pages 494-502.
    3. Ryszard Kata & Kazimierz Cyran & Sławomir Dybka & Małgorzata Lechwar & Rafał Pitera, 2021. "Economic and Social Aspects of Using Energy from PV and Solar Installations in Farmers’ Households in the Podkarpackie Region," Energies, MDPI, vol. 14(11), pages 1-21, May.
    4. Rikkonen, Pasi & Tapio, Petri & Rintamäki, Heidi, 2019. "Visions for small-scale renewable energy production on Finnish farms – A Delphi study on the opportunities for new business," Energy Policy, Elsevier, vol. 129(C), pages 939-948.
    5. Barnes, A.P. & McMillan, J. & Sutherland, L.-A. & Hopkins, J. & Thomson, S.G., 2022. "Farmer intentional pathways for net zero carbon: Exploring the lock-in effects of forestry and renewables," Land Use Policy, Elsevier, vol. 112(C).
    6. Wang, Xu & Zhang, Xiao-Bing & Zhu, Lei, 2019. "Imperfect market, emissions trading scheme, and technology adoption: A case study of an energy-intensive sector," Energy Economics, Elsevier, vol. 81(C), pages 142-158.
    7. María J. Ruiz-Fuensanta & María-Jesús Gutiérrez-Pedrero & Miguel-Ángel Tarancón, 2019. "The Role of Regional Determinants in the Deployment of Renewable Energy in Farms. The Case of Spain," Sustainability, MDPI, vol. 11(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tate, Graham & Mbzibain, Aurelian & Ali, Shaukat, 2012. "A comparison of the drivers influencing farmers' adoption of enterprises associated with renewable energy," Energy Policy, Elsevier, vol. 49(C), pages 400-409.
    2. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    3. Adams, P.W.R. & Lindegaard, K., 2016. "A critical appraisal of the effectiveness of UK perennial energy crops policy since 1990," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 188-202.
    4. Barnes, A.P. & McMillan, J. & Sutherland, L.-A. & Hopkins, J. & Thomson, S.G., 2022. "Farmer intentional pathways for net zero carbon: Exploring the lock-in effects of forestry and renewables," Land Use Policy, Elsevier, vol. 112(C).
    5. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    6. Calliope Panoutsou & Efthymia Alexopoulou, 2020. "Costs and Profitability of Crops for Bioeconomy in the EU," Energies, MDPI, vol. 13(5), pages 1-27, March.
    7. P. Mathiou & Stelios Rozakis & Rafal Pudelko & A. Faber & A. Petsakos, 2014. "Utility maximising supply response: the case of perennial biomass plantations in Poland," Working Papers 2014-3, Agricultural University of Athens, Department Of Agricultural Economics.
    8. Clancy, D. & Breen, J.P. & Thorne, F. & Wallace, M., 2012. "The influence of a Renewable Energy Feed in Tariff on the decision to produce biomass crops in Ireland," Energy Policy, Elsevier, vol. 41(C), pages 412-421.
    9. Sutherland, Lee-Ann & Peter, Sarah & Zagata, Lukas, 2015. "Conceptualising multi-regime interactions: The role of the agriculture sector in renewable energy transitions," Research Policy, Elsevier, vol. 44(8), pages 1543-1554.
    10. María J. Ruiz-Fuensanta & María-Jesús Gutiérrez-Pedrero & Miguel-Ángel Tarancón, 2019. "The Role of Regional Determinants in the Deployment of Renewable Energy in Farms. The Case of Spain," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    11. Tranter, R.B. & Swinbank, A. & Jones, P.J. & Banks, C.J. & Salter, A.M., 2011. "Assessing the potential for the uptake of on-farm anaerobic digestion for energy production in England," Energy Policy, Elsevier, vol. 39(5), pages 2424-2430, May.
    12. Mantziaris, Stamatis & Iliopoulos, Constantine & Theodorakopoulou, Irini & Petropoulou, Eugenia, 2017. "Perennial energy crops vs. durum wheat in low input lands: Economic analysis of a Greek case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 789-800.
    13. Elliott, William & Song, Hyun-a & Nam, Ilsung, 2013. "Small-dollar children's savings accounts and children's college outcomes by income level," Children and Youth Services Review, Elsevier, vol. 35(3), pages 560-571.
    14. Wayne E. Baker & Nathaniel Bulkley, 2014. "Paying It Forward vs. Rewarding Reputation: Mechanisms of Generalized Reciprocity," Organization Science, INFORMS, vol. 25(5), pages 1493-1510, October.
    15. Fanelli Rosa Maria, 2018. "Rural Small and Medium Enterprises Development in Molise (Italy)," European Countryside, Sciendo, vol. 10(4), pages 566-589, December.
    16. Larson, Donald F. & Breustedt, Gunnar, 2007. "Will markets direct investments under the Kyoto Protocol ?," Policy Research Working Paper Series 4131, The World Bank.
    17. Dimitropoulos, Alexandros & Kontoleon, Andreas, 2009. "Assessing the determinants of local acceptability of wind-farm investment: A choice experiment in the Greek Aegean Islands," Energy Policy, Elsevier, vol. 37(5), pages 1842-1854, May.
    18. Oliver Treib & Bernd Schlipphak, 2019. "Who gets committee leadership positions in the European Parliament? Evidence from the 2014 selection process," European Union Politics, , vol. 20(2), pages 219-238, June.
    19. Richard Fabling & Arthur Grimes & Lynda Sanderson, 2012. "Whatever next? Export market choices of New Zealand firms," Papers in Regional Science, Wiley Blackwell, vol. 91(1), pages 137-159, March.
    20. Martin, Nigel & Rice, John, 2015. "Improving Australia's renewable energy project policy and planning: A multiple stakeholder analysis," Energy Policy, Elsevier, vol. 84(C), pages 128-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:107:y:2017:i:c:p:548-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.