IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v132y2014icp276-287.html
   My bibliography  Save this article

Cuckoo search algorithm for short-term hydrothermal scheduling

Author

Listed:
  • Nguyen, Thang Trung
  • Vo, Dieu Ngoc
  • Truong, Anh Viet

Abstract

This paper proposes a cuckoo search algorithm (CSA) for solving short-term fixed-head hydrothermal scheduling (HTS) problem considering power losses in transmission systems and valve point loading effects in fuel cost function of thermal units. The CSA method is a new meta-heuristic algorithm inspired from the obligate brood parasitism of some cuckoo species by laying their eggs in the nests of other host birds of other species for solving optimization problems. The advantages of the CSA method are few control parameters and effective for optimization problems with complicated constraints. The effectiveness of the proposed CSA has been tested on different hydrothermal systems and the obtained test results have been compared to those from other methods in the literature. The result comparison has shown that the CSA can obtain higher quality solutions than many other methods. Therefore, the proposed CSA can be an efficient method for solving short-term fixed head hydrothermal scheduling problems.

Suggested Citation

  • Nguyen, Thang Trung & Vo, Dieu Ngoc & Truong, Anh Viet, 2014. "Cuckoo search algorithm for short-term hydrothermal scheduling," Applied Energy, Elsevier, vol. 132(C), pages 276-287.
  • Handle: RePEc:eee:appene:v:132:y:2014:i:c:p:276-287
    DOI: 10.1016/j.apenergy.2014.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914006989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basu, M. & Chowdhury, A., 2013. "Cuckoo search algorithm for economic dispatch," Energy, Elsevier, vol. 60(C), pages 99-108.
    2. Basu, M., 2011. "Artificial immune system for fixed head hydrothermal power system," Energy, Elsevier, vol. 36(1), pages 606-612.
    3. Ahmed, Jubaer & Salam, Zainal, 2014. "A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability," Applied Energy, Elsevier, vol. 119(C), pages 118-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özyön, Serdar & Yaşar, Celal, 2018. "Gravitational search algorithm applied to fixed head hydrothermal power system with transmission line security constraints," Energy, Elsevier, vol. 155(C), pages 392-407.
    2. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    3. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    4. Nesamalar, J. Jeslin Drusila & Venkatesh, P. & Raja, S. Charles, 2016. "Energy management by generator rescheduling in congestive deregulated power system," Applied Energy, Elsevier, vol. 171(C), pages 357-371.
    5. Amjad Ali & Kashif Irshad & Mohammad Farhan Khan & Md Moinul Hossain & Ibrahim N. A. Al-Duais & Muhammad Zeeshan Malik, 2021. "Artificial Intelligence and Bio-Inspired Soft Computing-Based Maximum Power Plant Tracking for a Solar Photovoltaic System under Non-Uniform Solar Irradiance Shading Conditions—A Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    6. Esmaeily, Ali & Ahmadi, Abdollah & Raeisi, Fatima & Ahmadi, Mohammad Reza & Esmaeel Nezhad, Ali & Janghorbani, Mohammadreza, 2017. "Evaluating the effectiveness of mixed-integer linear programming for day-ahead hydro-thermal self-scheduling considering price uncertainty and forced outage rate," Energy, Elsevier, vol. 122(C), pages 182-193.
    7. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    8. Kaboli, S. Hr. Aghay & Selvaraj, J. & Rahim, N.A., 2016. "Long-term electric energy consumption forecasting via artificial cooperative search algorithm," Energy, Elsevier, vol. 115(P1), pages 857-871.
    9. Chuanxiong Kang & Min Guo & Jinwen Wang, 2017. "Short-Term Hydrothermal Scheduling Using a Two-Stage Linear Programming with Special Ordered Sets Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3329-3341, September.
    10. Kaboli, S. Hr. Aghay & Fallahpour, A. & Selvaraj, J. & Rahim, N.A., 2017. "Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming," Energy, Elsevier, vol. 126(C), pages 144-164.
    11. Zhang, Jingrui & Lin, Shuang & Liu, Houde & Chen, Yalin & Zhu, Mingcheng & Xu, Yinliang, 2017. "A small-population based parallel differential evolution algorithm for short-term hydrothermal scheduling problem considering power flow constraints," Energy, Elsevier, vol. 123(C), pages 538-554.
    12. Cui Zheyuan & Ali Thaeer Hammid & Ali Noori Kareem & Mingxin Jiang & Muamer N. Mohammed & Nallapaneni Manoj Kumar, 2021. "A Rigid Cuckoo Search Algorithm for Solving Short-Term Hydrothermal Scheduling Problem," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    13. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
    14. Yin, Hao & Wu, Fei & Meng, Xin & Lin, Yicheng & Fan, Jingmin & Meng, Anbo, 2020. "Crisscross optimization based short-term hydrothermal generation scheduling with cascaded reservoirs," Energy, Elsevier, vol. 203(C).
    15. Weibo Zhao & Dongxiao Niu, 2017. "Prediction of CO 2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    16. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & B. Gharehpetian, G., 2017. "Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 116-129.
    17. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    18. Panda, Debashish & Ramteke, Manojkumar, 2019. "Preventive crude oil scheduling under demand uncertainty using structure adapted genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 68-82.
    19. Thang Trung Nguyen & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "Modified Differential Evolution Algorithm: A Novel Approach to Optimize the Operation of Hydrothermal Power Systems while Considering the Different Constraints and Valve Point Loading Effects," Energies, MDPI, vol. 11(3), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Thang Trung & Vo, Dieu Ngoc & Dinh, Bach Hoang, 2018. "An effectively adaptive selective cuckoo search algorithm for solving three complicated short-term hydrothermal scheduling problems," Energy, Elsevier, vol. 155(C), pages 930-956.
    2. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    3. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
    4. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    5. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Mohapatra, Alivarani & Nayak, Byamakesh & Das, Priti & Mohanty, Kanungo Barada, 2017. "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 854-867.
    7. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    8. Waleed Al Abri & Rashid Al Abri & Hassan Yousef & Amer Al-Hinai, 2021. "A Simple Method for Detecting Partial Shading in PV Systems," Energies, MDPI, vol. 14(16), pages 1-12, August.
    9. Narang, Nitin & Dhillon, J.S. & Kothari, D.P., 2012. "Multiobjective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method," Energy, Elsevier, vol. 47(1), pages 237-252.
    10. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    11. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    12. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    13. Paula Andrea Ortiz Valencia & Carlos Andres Ramos-Paja, 2015. "Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 8(11), pages 1-25, November.
    14. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    15. Mirza, Adeel Feroz & Mansoor, Majad & Zhan, Keyu & Ling, Qiang, 2021. "High-efficiency swarm intelligent maximum power point tracking control techniques for varying temperature and irradiance," Energy, Elsevier, vol. 228(C).
    16. Weibo Zhao & Dongxiao Niu, 2017. "Prediction of CO 2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    17. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    18. Wisam Kareem Meteab & Salwan Ali Habeeb Alsultani & Francisco Jurado, 2023. "Energy Management of Microgrids with a Smart Charging Strategy for Electric Vehicles Using an Improved RUN Optimizer," Energies, MDPI, vol. 16(16), pages 1-18, August.
    19. Ali M. Eltamaly & M. S. Al-Saud & A. G. Abo-Khalil, 2020. "Performance Improvement of PV Systems’ Maximum Power Point Tracker Based on a Scanning PSO Particle Strategy," Sustainability, MDPI, vol. 12(3), pages 1-20, February.
    20. Kamran Ali & Laiq Khan & Qudrat Khan & Shafaat Ullah & Saghir Ahmad & Sidra Mumtaz & Fazal Wahab Karam & Naghmash, 2019. "Robust Integral Backstepping Based Nonlinear MPPT Control for a PV System," Energies, MDPI, vol. 12(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:132:y:2014:i:c:p:276-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.