IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v163y2016icp295-303.html
   My bibliography  Save this article

Regional level approach for increasing energy efficiency

Author

Listed:
  • Viholainen, Juha
  • Luoranen, Mika
  • Väisänen, Sanni
  • Niskanen, Antti
  • Horttanainen, Mika
  • Soukka, Risto

Abstract

Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

Suggested Citation

  • Viholainen, Juha & Luoranen, Mika & Väisänen, Sanni & Niskanen, Antti & Horttanainen, Mika & Soukka, Risto, 2016. "Regional level approach for increasing energy efficiency," Applied Energy, Elsevier, vol. 163(C), pages 295-303.
  • Handle: RePEc:eee:appene:v:163:y:2016:i:c:p:295-303
    DOI: 10.1016/j.apenergy.2015.10.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915013288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Hon Loong & Varbanov, Petar Sabev & Klemes, Jirí Jaromír, 2011. "Regional renewable energy and resource planning," Applied Energy, Elsevier, vol. 88(2), pages 545-550, February.
    2. Aro, Teuvo, 2009. "Preconditions and tools for cross-sectoral regional industrial GHG and energy efficiency policy--A Finnish standpoint," Energy Policy, Elsevier, vol. 37(7), pages 2722-2733, July.
    3. Nielsen, Steffen & Möller, Bernd, 2012. "Excess heat production of future net zero energy buildings within district heating areas in Denmark," Energy, Elsevier, vol. 48(1), pages 23-31.
    4. Arnette, Andrew & Zobel, Christopher W., 2012. "An optimization model for regional renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4606-4615.
    5. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    6. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    8. Creutzig, Felix & Goldschmidt, Jan Christoph & Lehmann, Paul & Schmid, Eva & von Blücher, Felix & Breyer, Christian & Fernandez, Blanca & Jakob, Michael & Knopf, Brigitte & Lohrey, Steffen & Susca, Ti, 2014. "Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1015-1028.
    9. Oh, Se-Young & Binns, Michael & Yeo, Yeong-Koo & Kim, Jin-Kuk, 2014. "Improving energy efficiency for local energy systems," Applied Energy, Elsevier, vol. 131(C), pages 26-39.
    10. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    11. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    12. Yearwood Travezan, Jessica & Harmsen, Robert & van Toledo, Gideon, 2013. "Policy analysis for energy efficiency in the built environment in Spain," Energy Policy, Elsevier, vol. 61(C), pages 317-326.
    13. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    14. Jewell, Jessica & Cherp, Aleh & Riahi, Keywan, 2014. "Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices," Energy Policy, Elsevier, vol. 65(C), pages 743-760.
    15. Cormio, C. & Dicorato, M. & Minoia, A. & Trovato, M., 2003. "A regional energy planning methodology including renewable energy sources and environmental constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 99-130, April.
    16. Hast, A. & Syri, S. & Jokiniemi, J. & Huuskonen, M. & Cross, S., 2015. "Review of green electricity products in the United Kingdom, Germany and Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1370-1384.
    17. Klevas, Valentinas & Biekša, Kestutis & Murauskaitė, Lina, 2014. "Innovative method of RES integration into the regional energy development scenarios," Energy Policy, Elsevier, vol. 64(C), pages 324-336.
    18. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    19. Dicorato, M. & Forte, G. & Trovato, M., 2008. "Environmental-constrained energy planning using energy-efficiency and distributed-generation facilities," Renewable Energy, Elsevier, vol. 33(6), pages 1297-1313.
    20. Rutter, Paul & Keirstead, James, 2012. "A brief history and the possible future of urban energy systems," Energy Policy, Elsevier, vol. 50(C), pages 72-80.
    21. Müller, Matthias Otto & Stämpfli, Adrian & Dold, Ursula & Hammer, Thomas, 2011. "Energy autarky: A conceptual framework for sustainable regional development," Energy Policy, Elsevier, vol. 39(10), pages 5800-5810, October.
    22. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    23. Brandoni, Caterina & Polonara, Fabio, 2012. "The role of municipal energy planning in the regional energy-planning process," Energy, Elsevier, vol. 48(1), pages 323-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyu Zhao & Huijia Yang, 2020. "Regional Security Assessment of Integrated Energy Systems with Renewables in China: A Grid-Connected Perspective," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    2. Nie, Pu-yan & Yang, Yong-cong & Chen, You-hua & Wang, Zhao-hui, 2016. "How to subsidize energy efficiency under duopoly efficiently?," Applied Energy, Elsevier, vol. 175(C), pages 31-39.
    3. Jiang Zhu & Zhenyu Zhao, 2017. "Chinese Electric Power Development Coordination Analysis on Resource, Production and Consumption: A Provincial Case Study," Sustainability, MDPI, vol. 9(2), pages 1-19, February.
    4. Gallo, Michela & Del Borghi, Adriana & Strazza, Carlo & Parodi, Lara & Arcioni, Livia & Proietti, Stefania, 2016. "Opportunities and criticisms of voluntary emission reduction projects developed by Public Administrations: Analysis of 143 case studies implemented in Italy," Applied Energy, Elsevier, vol. 179(C), pages 1269-1282.
    5. Alexander Melnik & Irina Naoumova & Kirill Ermolaev & Jerome Katrichis, 2021. "Driving Innovation through Energy Efficiency: A Russian Regional Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    6. Davide Astiaso Garcia & Fabrizio Cumo & Mariagrazia Tiberi & Valentina Sforzini & Giuseppe Piras, 2016. "Cost-Benefit Analysis for Energy Management in Public Buildings: Four Italian Case Studies," Energies, MDPI, vol. 9(7), pages 1-17, July.
    7. Carmen De la Cruz-Lovera & Alberto-Jesús Perea-Moreno & José-Luis De la Cruz-Fernández & José Antonio Alvarez-Bermejo & Francisco Manzano-Agugliaro, 2017. "Worldwide Research on Energy Efficiency and Sustainability in Public Buildings," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    8. Emil Velinov & Yelena Petrenko & Elena Vechkinzova & Igor Denisov & Luis Ochoa Siguencia & Zofia Gródek-Szostak, 2020. "“Leaky Bucket” of Kazakhstan’s Power Grid: Losses and Inefficient Distribution of Electric Power," Energies, MDPI, vol. 13(11), pages 1-19, June.
    9. Jinpeng Liu & Li Wang & Mohan Qiu & Jiang Zhu, 2016. "Promotion Potentiality and Optimal Strategies Analysis of Provincial Energy Efficiency in China," Sustainability, MDPI, vol. 8(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    2. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    3. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    4. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    5. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    6. McCallum, Peter & Jenkins, David P. & Peacock, Andrew D. & Patidar, Sandhya & Andoni, Merlinda & Flynn, David & Robu, Valentin, 2019. "A multi-sectoral approach to modelling community energy demand of the built environment," Energy Policy, Elsevier, vol. 132(C), pages 865-875.
    7. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    8. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    9. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    10. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    11. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    12. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
    13. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    14. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    15. Zhou, Xiong & Huang, Guohe & Zhu, Hua & Chen, Jiapei & Xu, Jinliang, 2015. "Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada," Applied Energy, Elsevier, vol. 154(C), pages 663-677.
    16. Zhu, Y. & Li, Y.P. & Huang, G.H. & Fu, D.Z., 2013. "Modeling for planning municipal electric power systems associated with air pollution control – A case study of Beijing," Energy, Elsevier, vol. 60(C), pages 168-186.
    17. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
    18. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    19. Mirakyan, Atom & De Guio, Roland, 2015. "Modelling and uncertainties in integrated energy planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 62-69.
    20. Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:163:y:2016:i:c:p:295-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.