IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1801-1809.html
   My bibliography  Save this article

Optimum selection of compact heat exchangers using non-structural fuzzy decision method

Author

Listed:
  • Zhou, Guo-Yan
  • Wu, En
  • Tu, Shan-Tung

Abstract

Heat exchangers are the typical products of the process equipment, which have been playing an important role in process engineering. With the increase of awareness of energy shortage, saving energy and reducing waste have become the major principle of industrial production. The key to develop the energy saving technology has been the design of the optimal heat exchangers with the best comprehensive performance adapted to the different working conditions. It is thus of urgent need to develop the related design methodology and evaluation system. Because of the difficulties met in conception design of compact heat exchangers, a multi-level, multi-factor and non-structural fuzzy optimum decision model is used in the optimal selection of compact heat exchangers. A three-level fuzzy optimum decision is introduced with success to cover most of the effective factors and determine the optimal design projects, which includes six design projects and eight influencing factors.

Suggested Citation

  • Zhou, Guo-Yan & Wu, En & Tu, Shan-Tung, 2014. "Optimum selection of compact heat exchangers using non-structural fuzzy decision method," Applied Energy, Elsevier, vol. 113(C), pages 1801-1809.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1801-1809
    DOI: 10.1016/j.apenergy.2013.07.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913006089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.07.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chou, Shuo-Yan & Chang, Yao-Hui & Shen, Chun-Ying, 2008. "A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes," European Journal of Operational Research, Elsevier, vol. 189(1), pages 132-145, August.
    2. Sanaye, Sepehr & Dehghandokht, Masoud, 2011. "Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm," Applied Energy, Elsevier, vol. 88(5), pages 1568-1577, May.
    3. Wang, Tien-Chin & Chen, Yueh-Hsiang, 2007. "Applying consistent fuzzy preference relations to partnership selection," Omega, Elsevier, vol. 35(4), pages 384-388, August.
    4. Yekoladio, P.J. & Bello-Ochende, T. & Meyer, J.P., 2013. "Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS)," Renewable Energy, Elsevier, vol. 55(C), pages 128-137.
    5. Cavallaro, Fausto, 2010. "Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems," Applied Energy, Elsevier, vol. 87(2), pages 496-503, February.
    6. Tam, C.M. & Tong, Thomas K.L. & Chiu, Gerald W.C., 2006. "Comparing non-structural fuzzy decision support system and analytical hierarchy process in decision-making for construction problems," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1317-1324, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhe & Li, Yanzhong, 2016. "A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger," Applied Energy, Elsevier, vol. 165(C), pages 815-827.
    2. Hadidi, Amin, 2015. "A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm," Applied Energy, Elsevier, vol. 150(C), pages 196-210.
    3. Wang, Limin & Deng, Lei & Ji, Chenglong & Liang, Erkai & Wang, Changxia & Che, Defu, 2016. "Multi-objective optimization of geometrical parameters of corrugated-undulated heat transfer surfaces," Applied Energy, Elsevier, vol. 174(C), pages 25-36.
    4. He, Zhihao & Li, Manning & Cai, Zelin & Zhao, Rongsheng & Hong, Tingting & Yang, Zhi & Zhang, Zhi, 2021. "Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Xiao, Gang & Yang, Tianfeng & Liu, Huanlei & Ni, Dong & Ferrari, Mario Luigi & Li, Mingchun & Luo, Zhongyang & Cen, Kefa & Ni, Mingjiang, 2017. "Recuperators for micro gas turbines: A review," Applied Energy, Elsevier, vol. 197(C), pages 83-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    2. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    4. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.
    5. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    6. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    7. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    8. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    9. Thanh-Lam Nguyen, 2017. "Methods in Ranking Fuzzy Numbers: A Unified Index and Comparative Reviews," Complexity, Hindawi, vol. 2017, pages 1-13, July.
    10. Paul Tae-Woo Lee & Cheng-Wei Lin & Yi-Shih Chung, 2014. "Comparison analysis for subjective and objective weights of financial positions of container shipping companies," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(3), pages 241-250, May.
    11. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    12. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    13. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Nor, Khalil M.D. & Khoshnoudi, Masoumeh, 2016. "Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework," Energy, Elsevier, vol. 117(P1), pages 131-148.
    14. Xu, Jiuping & Song, Xiaoling & Wu, Yimin & Zeng, Ziqiang, 2015. "GIS-modelling based coal-fired power plant site identification and selection," Applied Energy, Elsevier, vol. 159(C), pages 520-539.
    15. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    16. Gordon, David & Bolisetti, Tirupati & Ting, David S-K. & Reitsma, Stanley, 2018. "Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 946-953.
    17. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    18. Alev Taskin Gumus & A. Yesim Yayla & Erkan Çelik & Aytac Yildiz, 2013. "A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey," Energies, MDPI, vol. 6(6), pages 1-16, June.
    19. Mao, Ning & Song, Mengjie & Deng, Shiming, 2016. "Application of TOPSIS method in evaluating the effects of supply vane angle of a task/ambient air conditioning system on energy utilization and thermal comfort," Applied Energy, Elsevier, vol. 180(C), pages 536-545.
    20. Abel Arredondo-Galeana & Baran Yeter & Farhad Abad & Stephanie Ordóñez-Sánchez & Saeid Lotfian & Feargal Brennan, 2023. "Material Selection Framework for Lift-Based Wave Energy Converters Using Fuzzy TOPSIS," Energies, MDPI, vol. 16(21), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1801-1809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.