IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp13-24.html
   My bibliography  Save this article

High temperature thermochemical processing of biomass and methane for high conversion and selectivity to H2-enriched syngas

Author

Listed:
  • Palumbo, Aaron W.
  • Sorli, Jeni C.
  • Weimer, Alan W.

Abstract

Hybrid thermochemical processes show promise to increase plant performance with respect to fungible hydrocarbon production as a substitute to petroleum-based transportation fuels. Biomass, methane, and steam were reacted in a high temperature, indirectly heated reactor to determine the effects of biomass type (microalgae, rice hulls, cotton stalk), temperature (1600–1800K), and reactant ratios (α=0–2.0; β=1.0–4.8) on carbon conversion, cold gas efficiency, and syngas composition. This hybrid co-feed system was shown to achieve high H2-content syngas with CO selectivity >0.90 and carbon conversion of both biomass and methane >0.90. Temperature was the dominant factor on the yields of CO, CO2, and CH4, while reactant ratios could be used to fine-tune the syngas composition. H2 yield was only slightly dependent on temperature and excess steam. CO formation was highly kinetically-limited for this temperature range. Biomass type slightly affected gasifier performance, most likely due to total char and soot yield from devolatilization. Allothermal reactor design results in comparable gasifier efficiencies depending on steam input and thermal efficiency; a solarthermal reactor would negate 1.3–1.6kgCO2/kgC processed and represents the recommended configuration for this type of process operation.

Suggested Citation

  • Palumbo, Aaron W. & Sorli, Jeni C. & Weimer, Alan W., 2015. "High temperature thermochemical processing of biomass and methane for high conversion and selectivity to H2-enriched syngas," Applied Energy, Elsevier, vol. 157(C), pages 13-24.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:13-24
    DOI: 10.1016/j.apenergy.2015.07.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.07.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clausen, Lasse R. & Houbak, Niels & Elmegaard, Brian, 2010. "Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water," Energy, Elsevier, vol. 35(5), pages 2338-2347.
    2. Bridgwater, A. V. & Toft, A. J. & Brammer, J. G., 2002. "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 181-246, September.
    3. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    4. Li, Hongqiang & Hong, Hui & Jin, Hongguang & Cai, Ruixian, 2010. "Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials," Applied Energy, Elsevier, vol. 87(9), pages 2846-2853, September.
    5. Sudiro, Maria & Bertucco, Alberto, 2009. "Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: Process simulation and optimization," Energy, Elsevier, vol. 34(12), pages 2206-2214.
    6. He, Jie & Zhang, Wennan, 2011. "Techno-economic evaluation of thermo-chemical biomass-to-ethanol," Applied Energy, Elsevier, vol. 88(4), pages 1224-1232, April.
    7. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gai, Chao & Chen, Mengjun & Liu, Tingting & Peng, Nana & Liu, Zhengang, 2016. "Gasification characteristics of hydrochar and pyrochar derived from sewage sludge," Energy, Elsevier, vol. 113(C), pages 957-965.
    2. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    3. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    4. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    5. Rahnama, Pourya & Paykani, Amin & Reitz, Rolf D., 2017. "A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine," Applied Energy, Elsevier, vol. 193(C), pages 182-198.
    6. Li, Tian & Niu, Yanqing & Wang, Liang & Shaddix, Christopher & Løvås, Terese, 2018. "High temperature gasification of high heating-rate chars using a flat-flame reactor," Applied Energy, Elsevier, vol. 227(C), pages 100-107.
    7. Liu, Xiufeng & Hong, Hui & Jin, Hongguang, 2017. "Mid-temperature solar fuel process combining dual thermochemical reactions for effectively utilizing wider solar irradiance," Applied Energy, Elsevier, vol. 185(P2), pages 1031-1039.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    2. Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
    3. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    4. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    5. Okolie, Jude A. & Nanda, Sonil & Dalai, Ajay K. & Berruti, Franco & Kozinski, Janusz A., 2020. "A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    7. Gong, Changming & Li, Zhaohui & Li, Dong & Liu, Jiajun & Si, Xiankai & Yu, Jiawei & Huang, Wei & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical investigation of hydrogen addition effects on methanol-air mixtures combustion in premixed laminar flames under lean burn conditions," Renewable Energy, Elsevier, vol. 127(C), pages 56-63.
    8. Michailos, Stavros & Parker, David & Webb, Colin, 2017. "Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation," MPRA Paper 87640, University Library of Munich, Germany.
    9. Zhen, Xudong & Wang, Yang, 2015. "Numerical analysis on original emissions for a spark ignition methanol engine based on detailed chemical kinetics," Renewable Energy, Elsevier, vol. 81(C), pages 43-51.
    10. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    11. Byun, Jaewon & Han, Jeehoon, 2016. "Process synthesis and analysis for catalytic conversion of lignocellulosic biomass to fuels: Separate conversion of cellulose and hemicellulose using 2-sec-butylphenol (SBP) solvent," Applied Energy, Elsevier, vol. 171(C), pages 483-490.
    12. Gong, Changming & Liu, Jiajun & Peng, Legao & Liu, Fenghua, 2017. "Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start," Renewable Energy, Elsevier, vol. 112(C), pages 457-465.
    13. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    14. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    15. Rahimpour, M.R. & Mirvakili, A. & Paymooni, K., 2011. "A novel water perm-selective membrane dual-type reactor concept for Fischer–Tropsch synthesis of GTL (gas to liquid) technology," Energy, Elsevier, vol. 36(2), pages 1223-1235.
    16. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    17. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    18. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    19. Fernand, Francois & Israel, Alvaro & Skjermo, Jorunn & Wichard, Thomas & Timmermans, Klaas R. & Golberg, Alexander, 2017. "Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 35-45.
    20. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:13-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.