IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i9p2846-2853.html
   My bibliography  Save this article

Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials

Author

Listed:
  • Li, Hongqiang
  • Hong, Hui
  • Jin, Hongguang
  • Cai, Ruixian

Abstract

Co-utilization of natural gas and biomass is a successful way to make efficient use of them for chemical production and power generation, for biomass is rich in carbon while natural gas is rich in hydrogen. The present paper therefore proposes a new polygeneration system taking biomass and natural gas as materials for methanol production and power generation. The new polygeneration system can achieve the optimal ratio of H2 to CO for methanol production by adjusting input ratio of natural gas to biomass without any energy penalty. Thus, the suggested system can eliminate CO to H2 shift process and CO2 remove process, which can avoid material and energy destruction; however, those processes are otherwise necessary in individual biomass to methanol plant. Moreover, the new system eliminates the CO2 addition process; however, the addition of CO2 is necessary in individual natural gas to methanol plant, which causes extra energy penalty. This system combined chemical production and power generation together, in order to achieve the cascaded utilization of chemical and physical energy of natural gas and biomass. In a further way, we investigated the key processes, to maximize the utilization of energy and improve system performance. A thermo-chemical process taking biomass and natural gas as co-feedstock is compared with the systems that only taking either biomass or natural gas as resource for methanol production and power generation. The evaluation and calculation of the systems are carried out by help of Aspen Plus process simulator. The evaluation results indicate that, the new polygeneration system can reduce materials input at least 9% compared with individual systems with same output. In a further way, the effect of natural gas to biomass feed ratio on system performance is also investigated. The research results show that, the proposed polygeneration system would be expected to realize efficient utilization of biomass and natural gas, and offer a possibility of developing new technologies for biomass and natural gas based systems.

Suggested Citation

  • Li, Hongqiang & Hong, Hui & Jin, Hongguang & Cai, Ruixian, 2010. "Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials," Applied Energy, Elsevier, vol. 87(9), pages 2846-2853, September.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2846-2853
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00277-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Möllersten, Kenneth & Gao, Lin & Yan, Jinyue & Obersteiner, Michael, 2004. "Efficient energy systems with CO2 capture and storage from renewable biomass in pulp and paper mills," Renewable Energy, Elsevier, vol. 29(9), pages 1583-1598.
    2. Feng, Xiao & Wang, Li & Min, Shuling, 2009. "Industrial emergy evaluation for hydrogen production systems from biomass and natural gas," Applied Energy, Elsevier, vol. 86(9), pages 1767-1773, September.
    3. Gao, Lin & Jin, Hongguang & Liu, Zelong & Zheng, Danxing, 2004. "Exergy analysis of coal-based polygeneration system for power and chemical production," Energy, Elsevier, vol. 29(12), pages 2359-2371.
    4. Valero, Antonio & Usón, Sergio, 2006. "Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant," Energy, Elsevier, vol. 31(10), pages 1643-1655.
    5. Gao, Lin & Li, Hongqiang & Chen, Bin & Jin, Hongguang & Lin, Rumou & Hong, Hui, 2008. "Proposal of a natural gas-based polygeneration system for power and methanol production," Energy, Elsevier, vol. 33(2), pages 206-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    2. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    3. Galanti, Leandro & Franzoni, Alessandro & Traverso, Alberto & Massardo, Aristide F., 2011. "Existing large steam power plant upgraded for hydrogen production," Applied Energy, Elsevier, vol. 88(5), pages 1510-1518, May.
    4. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    5. Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.
    6. Li, Sheng & Sui, Jun & Jin, Hongguang & Zheng, Jianjiao, 2013. "Full chain energy performance for a combined cooling, heating and power system running with methanol and solar energy," Applied Energy, Elsevier, vol. 112(C), pages 673-681.
    7. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    8. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    9. Xu, Jie & Wang, Ju & Du, Chunhua & Li, Shuaidan & Liu, Xia, 2020. "Understanding fusibility characteristics and flow properties of the biomass and biomass-coal ash samples," Renewable Energy, Elsevier, vol. 147(P1), pages 1352-1357.
    10. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    11. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    12. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Gai, Chao & Dong, Yuping & Zhang, Tonghui, 2014. "Downdraft gasification of corn straw as a non-woody biomass: Effects of operating conditions on chlorides distribution," Energy, Elsevier, vol. 71(C), pages 638-644.
    14. Lee, See Hoon & Yoon, Sang Jun & Ra, Ho Won & Son, Young Il & Hong, Jai Chang & Lee, Jae Goo, 2010. "Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier," Energy, Elsevier, vol. 35(8), pages 3239-3244.
    15. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    16. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    17. Lee, Sin Cherng & Sum Ng, Denny Kok & Yee Foo, Dominic Chwan & Tan, Raymond R., 2009. "Extended pinch targeting techniques for carbon-constrained energy sector planning," Applied Energy, Elsevier, vol. 86(1), pages 60-67, January.
    18. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    19. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    20. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2846-2853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.