IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v103y2013icp375-392.html
   My bibliography  Save this article

Extinction, discharge, and thrust characteristics of methanol fueled meso-scale thrust chamber

Author

Listed:
  • Shirsat, V.
  • Gupta, A.K.

Abstract

A meso-scale heat recirculating thrust chamber has been developed for use with methanol, by utilizing steam/oxygen as an oxidizer. The steam/oxygen mixture serves as a surrogate for hydrogen peroxide. The extinction regimes, discharge characteristics, and both steady state and pulsing thrust characteristics are presented. Differences between the extinction behavior of the thrust chamber both without and with the nozzle were explored and a non-dimensional extinction criterion established to predict low Re extinction. The discharge characteristics: coefficient of discharge and characteristic velocity efficiency were determined and correlated to throat Reynolds number. Thrust measurements taken with the indirect method show reasonable agreement with the isentropic solution for the experimental stagnation conditions, suggesting high nozzle efficiency despite low chamber pressures and high gas temperatures. The behavior of the thrust chamber in pulsed configuration was tested with methanol/oxygen and methanol/water/oxygen mixtures. High speed cinematography was used to study the evolution of the flame during the pulse.

Suggested Citation

  • Shirsat, V. & Gupta, A.K., 2013. "Extinction, discharge, and thrust characteristics of methanol fueled meso-scale thrust chamber," Applied Energy, Elsevier, vol. 103(C), pages 375-392.
  • Handle: RePEc:eee:appene:v:103:y:2013:i:c:p:375-392
    DOI: 10.1016/j.apenergy.2012.09.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191200699X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.09.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shirsat, V. & Gupta, A.K., 2011. "Performance characteristics of methanol and kerosene fuelled meso-scale heat-recirculating combustors," Applied Energy, Elsevier, vol. 88(12), pages 5069-5082.
    2. Vijayan, V. & Gupta, A.K., 2011. "Thermal performance of a meso-scale liquid-fuel combustor," Applied Energy, Elsevier, vol. 88(7), pages 2335-2343, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    2. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    3. Akhtar, Saad & Piffaretti, Stefano & Shamim, Tariq, 2018. "Numerical investigation of flame structure and blowout limit for lean premixed turbulent methane-air flames under high pressure conditions," Applied Energy, Elsevier, vol. 228(C), pages 21-32.
    4. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    5. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    6. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    2. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    3. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2014. "Performance of synthetic jet fuels in a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 118(C), pages 41-47.
    4. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    5. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    6. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    7. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2015. "Rh assisted catalytic oxidation of jet fuel surrogates in a meso-scale combustor," Applied Energy, Elsevier, vol. 145(C), pages 1-7.
    8. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2014. "Combustion of propane with Pt and Rh catalysts in a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 130(C), pages 350-356.
    9. Shirsat, V. & Gupta, A.K., 2011. "A review of progress in heat recirculating meso-scale combustors," Applied Energy, Elsevier, vol. 88(12), pages 4294-4309.
    10. Vinay Sankar & Sreejith Sudarsanan & Sudipto Mukhopadhyay & Prabhu Selvaraj & Aravind Balakrishnan & Ratna Kishore Velamati, 2023. "Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review," Energies, MDPI, vol. 16(10), pages 1-41, May.
    11. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    12. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    13. Xu, Jing & Cheng, Kunlin & Dang, Chaolei & Wang, Yilin & Liu, Zekuan & Qin, Jiang & Liu, Xiaoyong, 2023. "Performance comparison of liquid metal cooling system and regenerative cooling system in supersonic combustion ramjet engines," Energy, Elsevier, vol. 275(C).
    14. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    15. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Xu, Hongpeng & Li, Zhenwei & Tay, Kunlin & Zeng, Guang & Yu, Wenbin, 2020. "Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application," Applied Energy, Elsevier, vol. 260(C).
    16. Zhao, Zhengyang & Wang, Wei & Zuo, Zhengxing & Kuang, Nianling, 2022. "Investigation on the flame characteristics of premixed propane/air in a micro opposed flow porous combustor," Energy, Elsevier, vol. 238(PA).
    17. Deng, Daxiang & Xie, Yanlin & Chen, Liang & Pi, Guang & Huang, Yue, 2019. "Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling," Energy, Elsevier, vol. 181(C), pages 954-963.
    18. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    19. Wang, Wei & Zuo, Zhengxing & Liu, Jinxiang, 2019. "Numerical study of the premixed propane/air flame characteristics in a partially filled micro porous combustor," Energy, Elsevier, vol. 167(C), pages 902-911.
    20. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:103:y:2013:i:c:p:375-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.