IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v103y2013icp290-297.html
   My bibliography  Save this article

Intensified thermal integration in batch reactive distillation

Author

Listed:
  • Maiti, Debadrita
  • Jana, Amiya K.
  • Samanta, Amar Nath

Abstract

Published work on the heat integration of batch distillation is scare and mainly focuses on the continuous flow columns. This paper introduces a novel thermally integrated batch reactive distillation, in which, the rectification tower runs as usual at atmospheric pressure and the concentric reboiler operates under vacuum. It is inspected that the proposed thermally integrated batch reactive distillation with a concentric vacuum reboiler secures positive savings of energy and better economic figures than the conventional batch reactive distillation. Importantly, this scheme has the potential to enhance the product purity at steady state by the improvement of reaction conversion. For boosting both the energetic and economic performance of the proposed thermally integrated batch distillation scheme, in this contribution, we introduce further intensification by coupling the overhead vapor and the reboiler liquid.

Suggested Citation

  • Maiti, Debadrita & Jana, Amiya K. & Samanta, Amar Nath, 2013. "Intensified thermal integration in batch reactive distillation," Applied Energy, Elsevier, vol. 103(C), pages 290-297.
  • Handle: RePEc:eee:appene:v:103:y:2013:i:c:p:290-297
    DOI: 10.1016/j.apenergy.2012.09.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912006897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.09.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maiti, Debadrita & Jana, Amiya K. & Samanta, Amar Nath, 2011. "A novel heat integrated batch distillation scheme," Applied Energy, Elsevier, vol. 88(12), pages 5221-5225.
    2. Jana, Amiya K., 2010. "Heat integrated distillation operation," Applied Energy, Elsevier, vol. 87(5), pages 1477-1494, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Nguyen Van Duc & Minh, Le Quang & Nhien, Le Cao & Lee, Moonyong, 2015. "A novel self-heat recuperative dividing wall column to maximize energy efficiency and column throughput in retrofitting and debottlenecking of a side stream column," Applied Energy, Elsevier, vol. 159(C), pages 28-38.
    2. Zhang, Hongru & Wang, Shuai & Tang, Jiaxuan & Li, Ningning & Li, Yanan & Cui, Peizhe & Wang, Yinglong & Zheng, Shiqing & Zhu, Zhaoyou & Ma, Yixin, 2021. "Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis," Energy, Elsevier, vol. 229(C).
    3. Jana, Amiya K., 2016. "A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis," Applied Energy, Elsevier, vol. 172(C), pages 199-206.
    4. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana, Amiya K. & Maiti, Debadrita, 2013. "An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system," Energy, Elsevier, vol. 57(C), pages 527-534.
    2. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    3. Jana, Amiya K., 2016. "A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis," Applied Energy, Elsevier, vol. 172(C), pages 199-206.
    4. Babu, G. Uday Bhaskar & Aditya, R. & Jana, Amiya K., 2012. "Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use," Energy, Elsevier, vol. 45(1), pages 626-633.
    5. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    6. Kiran, Bandaru & Jana, Amiya K. & Samanta, Amar Nath, 2012. "A novel intensified heat integration in multicomponent distillation," Energy, Elsevier, vol. 41(1), pages 443-453.
    7. Shahandeh, H. & Ivakpour, J. & Kasiri, N., 2014. "Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm," Energy, Elsevier, vol. 64(C), pages 875-886.
    8. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Liu, Yanzhen & Cai, Fang, 2012. "Exergy analysis of a parallel double-effect organosilicon monomer distillation scheme," Energy, Elsevier, vol. 47(1), pages 498-504.
    9. Gang Xu & Feifei Liang & Yongping Yang & Yue Hu & Kai Zhang & Wenyi Liu, 2014. "An Improved CO 2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory," Energies, MDPI, vol. 7(5), pages 1-19, May.
    10. Botshekan, Maryam & Moheb, Ahmad & Vatankhah, Fatemeh & Karimi, Keikhosro & Shafiei, Marzieh, 2022. "Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis," Energy, Elsevier, vol. 239(PE).
    11. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.
    12. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    13. Cui, Chengtian & Li, Xingang & Guo, Dongrong & Sun, Jinsheng, 2017. "Towards energy efficient styrene distillation scheme: From grassroots design to retrofit," Energy, Elsevier, vol. 134(C), pages 193-205.
    14. Milão, Raquel de Freitas D. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2021. "Second Law analysis of large-scale sugarcane-ethanol biorefineries with alternative distillation schemes: Bioenergy carbon capture scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Fernández, Inmaculada & Renedo, Carlos J. & Pérez, Severiano F. & Ortiz, Alfredo & Mañana, Mario, 2012. "A review: Energy recovery in batch processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2260-2277.
    16. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    17. Rizk, J. & Nemer, M. & Clodic, D., 2012. "A real column design exergy optimization of a cryogenic air separation unit," Energy, Elsevier, vol. 37(1), pages 417-429.
    18. Evangelos Delikonstantis & Marco Scapinello & Georgios D. Stefanidis, 2017. "Investigating the Plasma-Assisted and Thermal Catalytic Dry Methane Reforming for Syngas Production: Process Design, Simulation and Evaluation," Energies, MDPI, vol. 10(9), pages 1-27, September.
    19. Zhou, Hao & Li, Hong & Geng, Xueli & Gao, Xin, 2023. "Techno-economic and energetic assessment of an innovative energy-saving separation process for electronic-grade acetone purification," Energy, Elsevier, vol. 282(C).
    20. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:103:y:2013:i:c:p:290-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.