IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p626-633.html
   My bibliography  Save this article

Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use

Author

Listed:
  • Babu, G. Uday Bhaskar
  • Aditya, R.
  • Jana, Amiya K.

Abstract

It has long been recognized that the highly irreversible operation of batch distillation involves more wastage of energy compared to continuous flow distillation. For boosting its energy efficiency, the middle vessel batch distillation (MVBD) column has been invented. In this paper, a rigorous model for an MVBD process for the separation of a ternary hydrocarbon system is developed to simulate its transient behavior. In order to obtain the products at their maximum achievable purities, we device the two operating policies for the representative configuration.

Suggested Citation

  • Babu, G. Uday Bhaskar & Aditya, R. & Jana, Amiya K., 2012. "Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use," Energy, Elsevier, vol. 45(1), pages 626-633.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:626-633
    DOI: 10.1016/j.energy.2012.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212005658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maiti, Debadrita & Jana, Amiya K. & Samanta, Amar Nath, 2011. "A novel heat integrated batch distillation scheme," Applied Energy, Elsevier, vol. 88(12), pages 5221-5225.
    2. Jana, Amiya K., 2010. "Heat integrated distillation operation," Applied Energy, Elsevier, vol. 87(5), pages 1477-1494, May.
    3. Suphanit, B., 2010. "Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution," Energy, Elsevier, vol. 35(3), pages 1505-1514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banerjee, Sudip & Jana, Amiya K., 2016. "Dynamic vapor recompression in a reactive batch rectifier: Analysis and nonlinear control," Energy, Elsevier, vol. 115(P1), pages 60-66.
    2. Jana, Amiya K. & Maiti, Debadrita, 2013. "An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system," Energy, Elsevier, vol. 57(C), pages 527-534.
    3. Modla, G., 2013. "Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer," Energy, Elsevier, vol. 50(C), pages 103-109.
    4. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana, Amiya K. & Maiti, Debadrita, 2013. "An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system," Energy, Elsevier, vol. 57(C), pages 527-534.
    2. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    3. Shahandeh, H. & Ivakpour, J. & Kasiri, N., 2014. "Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm," Energy, Elsevier, vol. 64(C), pages 875-886.
    4. Cui, Chengtian & Li, Xingang & Guo, Dongrong & Sun, Jinsheng, 2017. "Towards energy efficient styrene distillation scheme: From grassroots design to retrofit," Energy, Elsevier, vol. 134(C), pages 193-205.
    5. Areej Javed & Afaq Hassan & Muhammad Babar & Umair Azhar & Asim Riaz & Rana Mujahid & Tausif Ahmad & Muhammad Mubashir & Hooi Ren Lim & Pau Loke Show & Kuan Shiong Khoo, 2022. "A Comparison of the Exergy Efficiencies of Various Heat-Integrated Distillation Columns," Energies, MDPI, vol. 15(18), pages 1-15, September.
    6. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    7. Jana, Amiya K., 2016. "A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis," Applied Energy, Elsevier, vol. 172(C), pages 199-206.
    8. Markowski, Mariusz & Trafczynski, Marian & Kisielewski, Piotr, 2022. "The dynamic model of a rectification heat exchanger using the concept of heat-integrated distillation column," Energy, Elsevier, vol. 256(C).
    9. Modla, G., 2013. "Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer," Energy, Elsevier, vol. 50(C), pages 103-109.
    10. Shahandeh, Hossein & Ivakpour, Javad & Kasiri, Norollah, 2014. "Feasibility study of heat-integrated distillation columns using rigorous optimization," Energy, Elsevier, vol. 74(C), pages 662-674.
    11. Maiti, Debadrita & Jana, Amiya K. & Samanta, Amar Nath, 2013. "Intensified thermal integration in batch reactive distillation," Applied Energy, Elsevier, vol. 103(C), pages 290-297.
    12. Jana, Amiya K., 2016. "An internal thermal integration arrangement for multicomponent batch rectifier: 1. Feasibility and analysis," Energy, Elsevier, vol. 115(P1), pages 230-237.
    13. Shahandeh, Hossein & Jafari, Mina & Kasiri, Norollah & Ivakpour, Javad, 2015. "Economic optimization of heat pump-assisted distillation columns in methanol-water separation," Energy, Elsevier, vol. 80(C), pages 496-508.
    14. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    15. Kiran, Bandaru & Jana, Amiya K. & Samanta, Amar Nath, 2012. "A novel intensified heat integration in multicomponent distillation," Energy, Elsevier, vol. 41(1), pages 443-453.
    16. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    17. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Liu, Yanzhen & Cai, Fang, 2012. "Exergy analysis of a parallel double-effect organosilicon monomer distillation scheme," Energy, Elsevier, vol. 47(1), pages 498-504.
    18. Gang Xu & Feifei Liang & Yongping Yang & Yue Hu & Kai Zhang & Wenyi Liu, 2014. "An Improved CO 2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory," Energies, MDPI, vol. 7(5), pages 1-19, May.
    19. Botshekan, Maryam & Moheb, Ahmad & Vatankhah, Fatemeh & Karimi, Keikhosro & Shafiei, Marzieh, 2022. "Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis," Energy, Elsevier, vol. 239(PE).
    20. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:626-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.