IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p2993-d559807.html
   My bibliography  Save this article

Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time

Author

Listed:
  • Justyna Swiatkiewicz

    (Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213 str., 90-924 Łódź, Poland)

  • Radoslaw Slezak

    (Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213 str., 90-924 Łódź, Poland)

  • Liliana Krzystek

    (Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213 str., 90-924 Łódź, Poland)

  • Stanislaw Ledakowicz

    (Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213 str., 90-924 Łódź, Poland)

Abstract

The aim of the study was to evaluate the possibility of using the process of dark fermentation to convert kitchen waste into valuable volatile fatty acids in a semi-continuous process at different values of the organic loading rate (2.5 and 5.0 gVS/(L × d)) and hydraulic retention time (5 and 10 d) using anaerobic mixed microbial consortia. The experiments were performed in a bioreactor of working volume 8L with pH control. The maximum volatile fatty acids yield in a steady state (22.3 g/L) was achieved at the organic loading rate of 5.0 gVS/(L × d) and HRT of 10 days. The main products of dark fermentation were acetic and butyric acids, constituting, respectively, 35.2–47.7% and 24.1–30.0% of all identified volatile fatty acids. Additionally, at the beginning of the fermentation and in a steady-state condition, the microbial population analysis (16S rDNA) of the fermentation mixture with the most effective volatile fatty acids generation has been performed to monitor the DF microflora development. The dominant microorganisms at a phylum level in a steady state were Firmicutes (44.9%) and Bacteroidetes (30.1%), which indicate the main role of those phyla in the volatile fatty acids synthesis.

Suggested Citation

  • Justyna Swiatkiewicz & Radoslaw Slezak & Liliana Krzystek & Stanislaw Ledakowicz, 2021. "Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time," Energies, MDPI, vol. 14(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2993-:d:559807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/2993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/2993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    2. Chen, Yinguang & Luo, Jingyang & Yan, Yuanyuan & Feng, Leiyu, 2013. "Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells," Applied Energy, Elsevier, vol. 102(C), pages 1197-1204.
    3. Guo, Liang & Li, Xiao-Ming & Zeng, Guang-Ming & Zhou, Yi, 2010. "Effective hydrogen production using waste sludge and its filtrate," Energy, Elsevier, vol. 35(9), pages 3557-3562.
    4. Palomo-Briones, Rodolfo & Razo-Flores, Elías & Bernet, Nicolas & Trably, Eric, 2017. "Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control," Applied Energy, Elsevier, vol. 198(C), pages 77-87.
    5. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
    2. Kucharska, Karolina & Hołowacz, Iwona & Konopacka-Łyskawa, Donata & Rybarczyk, Piotr & Kamiński, Marian, 2018. "Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels," Renewable Energy, Elsevier, vol. 129(PA), pages 384-408.
    3. Castelló, Elena & Nunes Ferraz-Junior, Antonio Djalma & Andreani, Cristiane & Anzola-Rojas, Melida del Pilar & Borzacconi, Liliana & Buitrón, Germán & Carrillo-Reyes, Julián & Gomes, Simone Damasceno , 2020. "Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Qiao Wang & Huan Li & Kai Feng & Jianguo Liu, 2020. "Oriented Fermentation of Food Waste towards High-Value Products: A Review," Energies, MDPI, vol. 13(21), pages 1-29, October.
    5. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    6. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    7. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    8. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    9. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    11. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    13. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    14. Lopez-Hidalgo, Angel M. & Alvarado-Cuevas, Zazil D. & De Leon-Rodriguez, Antonio, 2018. "Biohydrogen production from mixtures of agro-industrial wastes: Chemometric analysis, optimization and scaling up," Energy, Elsevier, vol. 159(C), pages 32-41.
    15. Yermek Abilmazhinov & Kapan Shakerkhan & Vladimir Meshechkin & Yerzhan Shayakhmetov & Nurzhan Nurgaliyev & Anuarbek Suychinov, 2023. "Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    16. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    17. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun & Wei, Pengfei & Lin, Richen & Murphy, Jerry D., 2018. "Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios," Applied Energy, Elsevier, vol. 230(C), pages 1082-1092.
    19. Huang, Bao-Cheng & Li, Wen-Wei & Wang, Xu & Lu, Yan & Yu, Han-Qing, 2019. "Customizing anaerobic digestion-coupled processes for energy-positive and sustainable treatment of municipal wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 132-142.
    20. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2993-:d:559807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.