IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-42950-8_3.html
   My bibliography  Save this book chapter

General Convergence Results for Nonlinear Conjugate Gradient Methods

In: Nonlinear Conjugate Gradient Methods for Unconstrained Optimization

Author

Listed:
  • Neculai Andrei

    (Academy of Romanian Scientists)

Abstract

General convergence results for nonlinear conjugate gradient methods.

Suggested Citation

  • Neculai Andrei, 2020. "General Convergence Results for Nonlinear Conjugate Gradient Methods," Springer Optimization and Its Applications, in: Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, chapter 0, pages 89-123, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-42950-8_3
    DOI: 10.1007/978-3-030-42950-8_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiantian Zhao & Wei Hong Yang, 2023. "A Nonlinear Conjugate Gradient Method Using Inexact First-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 502-530, August.
    2. Abubakar, Auwal Bala & Kumam, Poom & Malik, Maulana & Ibrahim, Abdulkarim Hassan, 2022. "A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 640-657.
    3. Wumei Sun & Hongwei Liu & Zexian Liu, 2021. "A Class of Accelerated Subspace Minimization Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 811-840, September.
    4. George Baravdish & Gabriel Eilertsen & Rym Jaroudi & B. Tomas Johansson & Lukáš Malý & Jonas Unger, 2024. "A Hybrid Sobolev Gradient Method for Learning NODEs," SN Operations Research Forum, Springer, vol. 5(4), pages 1-39, December.
    5. Salihu, Nasiru & Kumam, Poom & Sulaiman, Ibrahim Mohammed & Arzuka, Ibrahim & Kumam, Wiyada, 2024. "An efficient Newton-like conjugate gradient method with restart strategy and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 354-372.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-42950-8_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.