IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v67y2017i1d10.1007_s10589-016-9883-4.html
   My bibliography  Save this article

A Riemannian conjugate gradient method for optimization on the Stiefel manifold

Author

Listed:
  • Xiaojing Zhu

    (Shanghai University of Electric Power)

Abstract

In this paper we propose a new Riemannian conjugate gradient method for optimization on the Stiefel manifold. We introduce two novel vector transports associated with the retraction constructed by the Cayley transform. Both of them satisfy the Ring-Wirth nonexpansive condition, which is fundamental for convergence analysis of Riemannian conjugate gradient methods, and one of them is also isometric. It is known that the Ring-Wirth nonexpansive condition does not hold for traditional vector transports as the differentiated retractions of QR and polar decompositions. Practical formulae of the new vector transports for low-rank matrices are obtained. Dai’s nonmonotone conjugate gradient method is generalized to the Riemannian case and global convergence of the new algorithm is established under standard assumptions. Numerical results on a variety of low-rank test problems demonstrate the effectiveness of the new method.

Suggested Citation

  • Xiaojing Zhu, 2017. "A Riemannian conjugate gradient method for optimization on the Stiefel manifold," Computational Optimization and Applications, Springer, vol. 67(1), pages 73-110, May.
  • Handle: RePEc:spr:coopap:v:67:y:2017:i:1:d:10.1007_s10589-016-9883-4
    DOI: 10.1007/s10589-016-9883-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9883-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9883-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Igor Grubisic & Raoul Pietersz, 2005. "Efficient Rank Reduction of Correlation Matrices," Finance 0502007, University Library of Munich, Germany.
    2. Hiroyuki Sato, 2016. "A Dai–Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions," Computational Optimization and Applications, Springer, vol. 64(1), pages 101-118, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harry Oviedo, 2023. "Proximal Point Algorithm with Euclidean Distance on the Stiefel Manifold," Mathematics, MDPI, vol. 11(11), pages 1-17, May.
    2. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    3. Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
    4. Ke Wang & Zhuo Chen & Shihui Ying & Xinjian Xu, 2023. "Low-Rank Matrix Completion via QR-Based Retraction on Manifolds," Mathematics, MDPI, vol. 11(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    2. Hiroyuki Sakai & Hideaki Iiduka, 2020. "Hybrid Riemannian conjugate gradient methods with global convergence properties," Computational Optimization and Applications, Springer, vol. 77(3), pages 811-830, December.
    3. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    4. Massimo Morini & Nick Webber, 2006. "An EZI Method to Reduce the Rank of a Correlation Matrix in Financial Modelling," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(4), pages 309-331.
    5. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
    6. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    7. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    8. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    9. Sakai, Hiroyuki & Sato, Hiroyuki & Iiduka, Hideaki, 2023. "Global convergence of Hager–Zhang type Riemannian conjugate gradient method," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    10. Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
    11. Hiroyuki Sato, 2023. "Riemannian optimization on unit sphere with p-norm and its applications," Computational Optimization and Applications, Springer, vol. 85(3), pages 897-935, July.
    12. Maxim Bouev & Ilia Manaev & Aleksei Minabutdinov, 2013. "Finding the Nearest Valid Covariance Matrix: An FX Market Case," EUSP Department of Economics Working Paper Series Ec-07/13, European University at St. Petersburg, Department of Economics.
    13. Raoul Pietersz & Patrick Groenen, 2004. "Rank reduction of correlation matrices by majorization," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 649-662.
    14. Hiroyuki Sato & Kensuke Aihara, 2019. "Cholesky QR-based retraction on the generalized Stiefel manifold," Computational Optimization and Applications, Springer, vol. 72(2), pages 293-308, March.
    15. Shujun Bi & Le Han & Shaohua Pan, 2013. "Approximation of rank function and its application to the nearest low-rank correlation matrix," Journal of Global Optimization, Springer, vol. 57(4), pages 1113-1137, December.
    16. Sudhanshu K Mishra, 2013. "Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Coevolutionary Algorithm," Economics Bulletin, AccessEcon, vol. 33(1), pages 1-18.
    17. Aleksei Minabutdinov & Ilia Manaev & Maxim Bouev, 2014. "Finding The Nearest Valid Covariance Matrix: A Fx Market Case," HSE Working papers WP BRP 32/FE/2014, National Research University Higher School of Economics.
    18. Ken-ichi Mitsui & Yoshio Tabata, 2006. "Random Correlation Matrix and De-Noising," Discussion Papers in Economics and Business 06-26, Osaka University, Graduate School of Economics.
    19. Mishra, SK, 2007. "Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program," MPRA Paper 2000, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:67:y:2017:i:1:d:10.1007_s10589-016-9883-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.