IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v482y2024ics0096300324004442.html
   My bibliography  Save this article

Complete solution to open problems on exponential augmented Zagreb index of chemical trees

Author

Listed:
  • Mondal, Sourav
  • Das, Kinkar Chandra

Abstract

One of the crucial problems in combinatorics and graph theory is characterizing extremal structures with respect to graph invariants from the family of chemical trees. Cruz et al. (2020) [7] presented a unified approach to identify extremal chemical trees for degree-based graph invariants in terms of graph order. The exponential augmented Zagreb index (EAZ) is a well-established graph invariant formulated for a graph G asEAZ(G)=∑vivj∈E(G)e(didjdi+dj−2)3, where di signifies the degree of vertex vi, and E(G) is the edge set. Due to some special counting features of EAZ, it was not covered by the aforementioned unified approach. As a result, the exploration of extremal chemical trees for this invariant was posed as an open problem in the same article. The present work focuses on generating a complete solution to this problem. Our findings offer maximal and minimal chemical trees of EAZ in terms of the graph order n.

Suggested Citation

  • Mondal, Sourav & Das, Kinkar Chandra, 2024. "Complete solution to open problems on exponential augmented Zagreb index of chemical trees," Applied Mathematics and Computation, Elsevier, vol. 482(C).
  • Handle: RePEc:eee:apmaco:v:482:y:2024:i:c:s0096300324004442
    DOI: 10.1016/j.amc.2024.128983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:482:y:2024:i:c:s0096300324004442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.