IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v473y2024ics009630032400119x.html
   My bibliography  Save this article

Open problems on Sombor index of unicyclic and bicyclic graphs

Author

Listed:
  • Das, Kinkar Chandra

Abstract

Let Γ=(V,E) be a graph of order p. Recently, the Sombor index is introduced, defined asSO(Γ)=∑vivj∈E(Γ)dΓ(vi)2+dΓ(vj)2, where dΓ(vi) is the degree of the vertex vi in Γ. Cruz and Rada [4] obtained an upper bound on the Sombor index of unicyclic and bicyclic graphs of order p, but did not characterize the extremal graphs. In the same paper, they mentioned that the maximal graphs over the set of unicyclic and bicyclic graphs with respect to Sombor index, is an interesting problem that remains open. In this paper we completely solve these problems.

Suggested Citation

  • Das, Kinkar Chandra, 2024. "Open problems on Sombor index of unicyclic and bicyclic graphs," Applied Mathematics and Computation, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:apmaco:v:473:y:2024:i:c:s009630032400119x
    DOI: 10.1016/j.amc.2024.128647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032400119X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Kinkar Chandra & Gutman, Ivan, 2022. "On Sombor index of trees," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Cruz, Roberto & Gutman, Ivan & Rada, Juan, 2021. "Sombor index of chemical graphs," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    3. Rada, Juan & Rodríguez, José M. & Sigarreta, José M., 2023. "On integral Sombor indices," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    4. Chen, Meng & Zhu, Yan, 2024. "Extremal unicyclic graphs of Sombor index," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    5. Du, Jianwei & Sun, Xiaoling, 2024. "On bond incident degree index of chemical trees with a fixed order and a fixed number of leaves," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    6. Kinkar Chandra Das & Yilun Shang, 2021. "Some Extremal Graphs with Respect to Sombor Index," Mathematics, MDPI, vol. 9(11), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rada, Juan & Rodríguez, José M. & Sigarreta, José M., 2024. "Sombor index and elliptic Sombor index of benzenoid systems," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    2. Li, Shuchao & Wang, Zheng & Zhang, Minjie, 2022. "On the extremal Sombor index of trees with a given diameter," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    3. Das, Kinkar Chandra & Gutman, Ivan, 2022. "On Sombor index of trees," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Zhang, Weilin & You, Lihua & Liu, Hechao & Huang, Yufei, 2021. "The expected values and variances for Sombor indices in a general random chain," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    5. Cruz, Roberto & Rada, Juan & Sigarreta, José M., 2021. "Sombor index of trees with at most three branch vertices," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    6. Kinkar Chandra Das & Yilun Shang, 2021. "Some Extremal Graphs with Respect to Sombor Index," Mathematics, MDPI, vol. 9(11), pages 1-15, May.
    7. Shang, Yilun, 2022. "Sombor index and degree-related properties of simplicial networks," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    8. Mondal, Sourav & Das, Kinkar Chandra, 2024. "Complete solution to open problems on exponential augmented Zagreb index of chemical trees," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    9. Sun, Xiaoling & Du, Jianwei, 2022. "On Sombor index of trees with fixed domination number," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    10. Chen, Meng & Zhu, Yan, 2024. "Extremal unicyclic graphs of Sombor index," Applied Mathematics and Computation, Elsevier, vol. 463(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:473:y:2024:i:c:s009630032400119x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.