IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v324y2018icp191-201.html
   My bibliography  Save this article

On the ordering of distance-based invariants of graphs

Author

Listed:
  • Liu, Muhuo
  • Das, Kinkar Ch.

Abstract

Let d(u, v) be the distance between u and v of graph G, and let Wf(G) be the sum of f(d(u, v)) over all unordered pairs {u, v} of vertices of G, where f(x) is a function of x. In some literatures, Wf(G) is also called the Q-index of G. In this paper, some unified properties to Q-indices are given, and the majorization theorem is illustrated to be a good tool to deal with the ordering problem of Q-index among trees with n vertices. With the application of our new results, we determine the four largest and three smallest (resp. four smallest and three largest) Q-indices of trees with n vertices for strictly decreasing (resp. increasing) nonnegative function f(x), and we also identify the twelve largest (resp. eighteen smallest) Harary indices of trees of order n ≥ 22 (resp. n ≥ 38) and the ten smallest hyper-Wiener indices of trees of order n ≥ 18, which improve the corresponding main results of Xu (2012) and Liu and Liu (2010), respectively. Furthermore, we obtain some new relations involving Wiener index, hyper-Wiener index and Harary index, which gives partial answers to some problems raised in Xu (2012).

Suggested Citation

  • Liu, Muhuo & Das, Kinkar Ch., 2018. "On the ordering of distance-based invariants of graphs," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 191-201.
  • Handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:191-201
    DOI: 10.1016/j.amc.2017.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dehmer, Matthias & Emmert-Streib, Frank & Shi, Yongtang, 2015. "Graph distance measures based on topological indices revisited," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 623-633.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghorbani, Modjtaba & Dehmer, Matthias & Rajabi-Parsa, Mina & Emmert-Streib, Frank & Mowshowitz, Abbe, 2019. "Hosoya entropy of fullerene graphs," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 88-98.
    2. Yu, Guihai & Li, Xingfu, 2020. "Connective Steiner 3-eccentricity index and network similarity measure," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Modjtaba Ghorbani & Matthias Dehmer & Frank Emmert-Streib, 2020. "Properties of Entropy-Based Topological Measures of Fullerenes," Mathematics, MDPI, vol. 8(5), pages 1-23, May.
    4. Ilić, Aleksandar & Ilić, Milovan, 2017. "Counterexamples to conjectures on graph distance measures based on topological indexes," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 148-152.
    5. Ghorbani, Modjtaba & Hakimi-Nezhaad, Mardjan & Dehmer, Matthias, 2022. "Novel results on partial hosoya polynomials: An application in chemistry," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    6. Das, Kinkar Ch. & Gutman, Ivan & Nadjafi–Arani, Mohammad J., 2015. "Relations between distance–based and degree–based topological indices," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 142-147.
    7. Choi, Hayoung & Lee, Hosoo & Shen, Yifei & Shi, Yuanming, 2019. "Comparing large-scale graphs based on quantum probability theory," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 1-15.
    8. Maryam Jalali-Rad & Modjtaba Ghorbani & Matthias Dehmer & Frank Emmert-Streib, 2021. "Orbit Entropy and Symmetry Index Revisited," Mathematics, MDPI, vol. 9(10), pages 1-13, May.
    9. Ghorbani, Modjtaba & Dehmer, Matthias & Zangi, Samaneh, 2018. "Graph operations based on using distance-based graph entropies," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 547-555.
    10. Knor, Martin & Škrekovski, Riste & Tepeh, Aleksandra, 2016. "Digraphs with large maximum Wiener index," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 260-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:324:y:2018:i:c:p:191-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.