IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v476y2024ics0096300324002467.html
   My bibliography  Save this article

A discrete-time model of phenotypic evolution

Author

Listed:
  • Cirne, Diego
  • Campos, Paulo R.A.

Abstract

A model is proposed for the phenotypic evolution of a very large population under sustained environmental change and non-overlapping generations, with a single trait considered. Due to an extension of the standard law of quantitative inheritance, each evolutionary mechanism corresponds to a function between random variables associated with distinct stages of the life cycle. Such an approach leads to a two-dimensional map where the dynamics of the phenotypic mean and variance are directly connected. Then, the declining population paradigm is explored in terms of the critical rate of environmental change and using the techniques of the dynamical systems theory. Our results first reveal the opposing pressures on the phenotypic variance due to the conflict between phenotypic load and the ability to pursue the optimum, translated into an optimal value for maximizing the critical rate. Secondly, the introduction of development, through the particular case of linear plasticity, leads to a decreasing degree of stability with the magnitude of plasticity, which means that the recovery time from disturbances is harmed as the plastic effect intensifies, even though no constitutive costs have been assumed, a feature almost as important as the mean fitness to the viability of populations subject to persistent changes. Notwithstanding, the system is stable, and the growth rate benefits from increased plasticity, as expected.

Suggested Citation

  • Cirne, Diego & Campos, Paulo R.A., 2024. "A discrete-time model of phenotypic evolution," Applied Mathematics and Computation, Elsevier, vol. 476(C).
  • Handle: RePEc:eee:apmaco:v:476:y:2024:i:c:s0096300324002467
    DOI: 10.1016/j.amc.2024.128781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324002467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:476:y:2024:i:c:s0096300324002467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.