IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13767-1.html
   My bibliography  Save this article

Standing genetic variation fuels rapid adaptation to ocean acidification

Author

Listed:
  • M. C. Bitter

    (University of Chicago)

  • L. Kapsenberg

    (CSIC Institute of Marine Sciences)

  • J.-P. Gattuso

    (Sorbonne Université, CNRS
    Institute for Sustainable Development and International Relations, Sciences Po)

  • C. A. Pfister

    (University of Chicago)

Abstract

Global climate change has intensified the need to assess the capacity for natural populations to adapt to abrupt shifts in the environment. Reductions in seawater pH constitute a conspicuous global change stressor that is affecting marine ecosystems globally. Here, we quantify the phenotypic and genetic modifications associated with rapid adaptation to reduced seawater pH in the Mediterranean mussel, Mytilus galloprovincialis. We reared a genetically diverse larval population in two pH treatments (pHT 8.1 and 7.4) and tracked changes in the shell-size distribution and genetic variation through settlement. Additionally, we identified differences in the signatures of selection on shell growth in each pH environment. Both phenotypic and genetic data show that standing variation can facilitate adaptation to declines in seawater pH. This work provides insight into the processes underpinning rapid evolution, and demonstrates the importance of maintaining variation within natural populations to bolster species’ adaptive capacity as global change progresses.

Suggested Citation

  • M. C. Bitter & L. Kapsenberg & J.-P. Gattuso & C. A. Pfister, 2019. "Standing genetic variation fuels rapid adaptation to ocean acidification," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13767-1
    DOI: 10.1038/s41467-019-13767-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13767-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13767-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David B. Stern & Nathan W. Anderson & Juanita A. Diaz & Carol Eunmi Lee, 2022. "Genome-wide signatures of synergistic epistasis during parallel adaptation in a Baltic Sea copepod," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Cirne, Diego & Campos, Paulo R.A., 2024. "A discrete-time model of phenotypic evolution," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    3. Julio Diaz Caballero & Rachel M. Wheatley & Natalia Kapel & Carla López-Causapé & Thomas Van der Schalk & Angus Quinn & Liam P. Shaw & Lois Ogunlana & Claudia Recanatini & Basil Britto Xavier & Leen T, 2023. "Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Xiaohe Lin & Junjie Yin & Yifan Wang & Jing Yao & Qingshun Q. Li & Vit Latzel & Oliver Bossdorf & Yuan-Ye Zhang, 2024. "Environment-induced heritable variations are common in Arabidopsis thaliana," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13767-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.