IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v411y2021ics0096300321005373.html
   My bibliography  Save this article

The influence of heterogeneity of adoption thresholds on limited information spreading

Author

Listed:
  • Yang, Qiwen
  • Zhu, Xuzhen
  • Tian, Yang
  • Wang, Guanglu
  • Zhang, Yuexia
  • Chen, Lei

Abstract

The spreading process of information on complex networks has been widely explored. In fact, different individuals in a network usually hold different standards for information adoption. Considering the heterogeneity of adoption thresholds, this study constructs a two-layer network model with limited contacts. The adoption threshold of a node is related to its degree and a parameter obeying truncated normal distribution. This study also proposes a partition theory based on edges to analyze the mechanism of information dissemination quantitatively. Experiments find that increasing the mean of parameters can inhibit information from spreading, and the effect of the standard deviation of parameters on information dissemination depends on the mean of parameters. For instance, when the mean of parameters is a low value, as the standard deviation of parameters increases, the information outbreak size will decrease. On the other hand, the information outbreak size will increase continuously with increased propagation probability. If the mean of parameters is high, the information outbreak size will increase first and then decrease with the increment in the standard deviation of parameters. The theoretical predictions of this study are in good agreement with the numerical simulations.

Suggested Citation

  • Yang, Qiwen & Zhu, Xuzhen & Tian, Yang & Wang, Guanglu & Zhang, Yuexia & Chen, Lei, 2021. "The influence of heterogeneity of adoption thresholds on limited information spreading," Applied Mathematics and Computation, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321005373
    DOI: 10.1016/j.amc.2021.126448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321005373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Hao & Peng, Wangxin & Zhao, Dandan & Wang, Wei, 2020. "Impact of the heterogeneity of adoption thresholds on behavior spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Centola, Damon & Eguíluz, Víctor M. & Macy, Michael W., 2007. "Cascade dynamics of complex propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 449-456.
    3. Panagiotis D Karampourniotis & Sameet Sreenivasan & Boleslaw K Szymanski & Gyorgy Korniss, 2015. "The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-15, November.
    4. Jinqing Zhao & Maoxing Liu & Wanwan Wang & Panzu Yang, 2014. "The Stability of SI Epidemic Model in Complex Networks with Stochastic Perturbation," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-14, March.
    5. Prithu Banerjee & Wei Chen & Laks V. S. Lakshmanan, 2018. "Maximizing Welfare in Social Networks under a Utility Driven Influence Diffusion Model," Papers 1807.02502, arXiv.org, revised May 2019.
    6. Cai, Shi-Min & Chen, Xuan-Hao & Ye, Xi-Jun & Tang, Ming, 2019. "Precisely identifying the epidemic thresholds in real networks via asynchronous updating," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 377-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Cui, Yajuan & Wei, Ruichen & Tian, Yang & Tian, Hui & Zhu, Xuzhen, 2022. "Information propagation influenced by individual fashion-passion trend on multi-layer weighted network," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Yajuan & Wei, Ruichen & Tian, Yang & Tian, Hui & Zhu, Xuzhen, 2022. "Information propagation influenced by individual fashion-passion trend on multi-layer weighted network," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Solmaria Halleck Vega & Antoine Mandel, 2017. "A network-based approach to technology transfers in the context of climate policy," Documents de travail du Centre d'Economie de la Sorbonne 17009, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    4. Wang, Xuhui & Wu, Jiao & Yang, Zheng & Xu, Kesheng & Wang, Zhengling & Zheng, Muhua, 2024. "The correlation between independent edge and triangle degrees promote the explosive information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    5. Lambiotte, R. & Panzarasa, P., 2009. "Communities, knowledge creation, and information diffusion," Journal of Informetrics, Elsevier, vol. 3(3), pages 180-190.
    6. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    7. Wang, Yuyao & Bu, Zhan & Yang, Huan & Li, Hui-Jia & Cao, Jie, 2021. "An effective and scalable overlapping community detection approach: Integrating social identity model and game theory," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    8. Tian, Yang & Zhu, Xuzhen & Yang, Qiwen & Tian, Hui & Cui, Qimei, 2022. "Propagation characteristic of adoption thresholds heterogeneity in double-layer networks with edge weight distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    9. Côme Billard, 2020. "Technology Contagion in Networks," Working Papers 2020.01, FAERE - French Association of Environmental and Resource Economists.
    10. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    11. Teruyoshi Kobayashi, 2015. "Trend-driven information cascades on random networks," Discussion Papers 1529, Graduate School of Economics, Kobe University.
    12. Wang, Jianwei & Wang, Siyuan & Wang, Ziwei, 2022. "Robustness of spontaneous cascading dynamics driven by reachable area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    13. Haydée Lugo & Maxi San Miguel, 2014. "Learning and coordinating in a multilayer network," Documentos de Trabajo del ICAE 2014-30, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    14. Wei Duan, 2021. "Matrix-Based Formulation of Heterogeneous Individual-Based Models of Infectious Diseases: Using SARS Epidemic as a Case Study," IJERPH, MDPI, vol. 18(11), pages 1-20, May.
    15. Nikolaj Horsevad & David Mateo & Robert E. Kooij & Alain Barrat & Roland Bouffanais, 2022. "Transition from simple to complex contagion in collective decision-making," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Kooij, Robert E. & Sørensen, Nikolaj Horsevad & Bouffanais, Roland, 2021. "Tuning the clustering coefficient of generalized circulant networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    17. Zhang, Ningbo & Yang, Qiwen & Zhu, Xuzhen, 2022. "The impact of social resource allocation on epidemic transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    18. Karimi, Fariba & Holme, Petter, 2013. "Threshold model of cascades in empirical temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3476-3483.
    19. Xu, Jinghong & Zhang, Lin & Ma, Baojun & Wu, Ye, 2016. "Impacts of suppressing guide on information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 922-927.
    20. Maksim A. Kurganov & Elena A. Tretyakova, 2020. "Sustainable regional development assessment in terms of realizing the values of key stakeholders," Journal of New Economy, Ural State University of Economics, vol. 21(4), pages 104-130, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321005373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.