IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v433y2022ics0096300322004775.html
   My bibliography  Save this article

Event-triggered adaptive sliding mode control of cyber-physical systems under false data injection attack

Author

Listed:
  • Xue, Yanmei
  • Ren, Wen
  • Zheng, Bo-Chao
  • Han, Jinke

Abstract

This paper studies the event-triggered adaptive sliding mode control(ASMC) problem for the cyber-physical systems (CPSs) under the false data injection attack (FDIA). First, for the unknown upper bound information of the false data injection attack, the adaptive technique is used to estimate the upper bound of the attack mode. Then the event-triggered ASMC method is developed by combining with the event-triggered mechanism. Second, Lyapunov’s stability theory is used to prove the admissibility of the formed event-triggered ASMC design scheme. Finally, simulation results verifies the effectiveness and superiority of the proposed method, which ensures the security and stability of the system and improve the utilization of information resource.

Suggested Citation

  • Xue, Yanmei & Ren, Wen & Zheng, Bo-Chao & Han, Jinke, 2022. "Event-triggered adaptive sliding mode control of cyber-physical systems under false data injection attack," Applied Mathematics and Computation, Elsevier, vol. 433(C).
  • Handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322004775
    DOI: 10.1016/j.amc.2022.127403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322004775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ran, Suzhen & Xue, Yanmei & Zheng, Bo-Chao & Wang, Zhenyou, 2017. "Quantized feedback fuzzy sliding mode control design via memory-based strategy," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 283-295.
    2. Liu, Hui & Sun, Dihua & Liu, Weining, 2016. "Lattice hydrodynamic model based traffic control: A transportation cyber–physical system approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 795-801.
    3. Hou, Linlin & Li, Yao & Luo, Wende & Sun, Haibin, 2022. "Adaptive tracking control of switched cyber-physical systems with cyberattacks," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Yiwen & Qu, Ziyu & Yao, Zhaohui & Zhao, Xiujuan & Tang, Yiwen, 2023. "Event-Triggered iterative learning control for asynchronously switched systems," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    2. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    3. Ding, Hongfei & Wang, Yudong & Shen, Hao, 2024. "A reinforcement learning integral sliding mode control scheme against lumped disturbances in hot strip rolling," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    4. Wang, Chen & Qi, Yiwen & Tang, Yiwen & Li, Xin & Ji, Ming, 2024. "Robust control with protected feedback information for switched systems under injection attacks," Applied Mathematics and Computation, Elsevier, vol. 475(C).
    5. Dong, Lewei & Xu, Huiling & Zhang, Liming & Li, Zhengcai & Chen, Yuqing, 2023. "Adjustable proportional-integral multivariable observer-based FDI attack dynamic reconstitution and secure control for cyber-physical systems," Applied Mathematics and Computation, Elsevier, vol. 443(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Meng & Zhang, Lihua & Qi, Wenhai & Cao, Jinde & Cheng, Jun & Kao, Yonggui & Wei, Yunliang & Yan, Xiaoyu, 2020. "SMC for semi-Markov jump T-S fuzzy systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    2. Chen, Xiangyong & Park, Ju H. & Cao, Jinde & Qiu, Jianlong, 2017. "Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances," Applied Mathematics and Computation, Elsevier, vol. 308(C), pages 161-173.
    3. Ma, Yajing & Li, Zhanjie & Xie, Xiangpeng & Yue, Dong, 2023. "Adaptive consensus of uncertain switched nonlinear multi-agent systems under sensor deception attacks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Zhu, Chenqiang & Zhong, Shiquan & Li, Guangyu & Ma, Shoufeng, 2017. "New control strategy for the lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 445-453.
    5. Wang, Bo & Cheng, Jun & Zhou, Xia, 2020. "A multiple hierarchical structure strategy to quantized control of Markovian switching systems," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    6. Yongping Yang & Xiaoen Li & Zhiping Yang & Qing Wei & Ningling Wang & Ligang Wang, 2018. "The Application of Cyber Physical System for Thermal Power Plants: Data-Driven Modeling," Energies, MDPI, vol. 11(4), pages 1-16, March.
    7. Xue, Yanmei & Zheng, Bo-Chao & Li, Tao & Li, Yuanlu, 2017. "Robust adaptive state feedback sliding-mode control of memristor-based Chua’s systems with input nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 142-153.
    8. Khan, Wakeel & Lin, Yan & Ullah Khan, Sarmad & Ullah, Nasim, 2018. "Quantized adaptive decentralized control for interconnected nonlinear systems with actuator faults," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 175-189.
    9. Zhang, Yanqi & Wang, Zhenlei & Wang, Xin, 2023. "Adaptive modified prescribed performance constraint control for uncertain nonlinear discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    10. Chu, Xiaoan & Li, Muguo, 2019. "Observer-based model following sliding mode tracking control of discrete-time linear networked systems with two-channel event-triggered schemes and quantizations," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 428-448.
    11. Sun, Haibin & Cui, Yahui & Hou, Linlin & Shi, Kaibo, 2022. "Adaptive finite-time control for cyber-physical systems with injection and deception attacks," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322004775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.