IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i23p4543-4548.html
   My bibliography  Save this article

Impact of heterogeneous human activities on epidemic spreading

Author

Listed:
  • Yang, Zimo
  • Cui, Ai-Xiang
  • Zhou, Tao

Abstract

Recent empirical observations suggest a heterogeneous nature of human activities. The heavy-tailed inter-event time distribution at the population level is well accepted, while whether the individual acts in a heterogeneous way is still under debate. Motivated by the impact of temporal heterogeneity of human activities on epidemic spreading, this paper studies the susceptible-infected model on a fully mixed population, where each individual acts in a completely homogeneous way but different individuals have different mean activities. Extensive simulations show that the heterogeneity of activities at the population level remarkably affects the speed of spreading, even though each individual behaves regularly. Furthermore, the spreading speed of this model is more sensitive to the change of system heterogeneity compared with the model consisted of individuals acting with heavy-tailed inter-event time distributions. This work refines our understanding of the impact of heterogeneous human activities on epidemic spreading.

Suggested Citation

  • Yang, Zimo & Cui, Ai-Xiang & Zhou, Tao, 2011. "Impact of heterogeneous human activities on epidemic spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4543-4548.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4543-4548
    DOI: 10.1016/j.physa.2011.06.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111005152
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.06.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Xiao & Han, Yuexing & Wang, Bing, 2023. "Impacts of detection and contact tracing on the epidemic spread in time-varying networks," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    2. Li, Ruiqi & Wang, Wenxu & Di, Zengru, 2017. "Effects of human dynamics on epidemic spreading in Côte d’Ivoire," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 30-40.
    3. Zhang, Xin & Xie, Sheng & Vilela, André L.M. & Stanley, H. Eugene, 2019. "Inter-event time interval analysis of organizational-level activity: Venture capital market case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 346-355.
    4. Huo, Jie & Wang, Xu-Ming & Zhao, Ning & Hao, Rui, 2016. "Statistical characteristics of dynamics for population migration driven by the economic interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 123-134.
    5. Wu, Lianren & Qi, Jiayin & Shi, Nan & Li, Jinjie & Yan, Qiang, 2022. "Revealing the relationship of topics popularity and bursty human activity patterns in social temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    6. Jia, Peng & Liu, Jiayong & Fang, Yong & Liu, Liang & Liu, Luping, 2018. "Modeling and analyzing malware propagation in social networks with heterogeneous infection rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 240-254.
    7. Chen, Ning & Zhu, Xuzhen & Chen, Yanyan, 2019. "Information spreading on complex networks with general group distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 671-676.
    8. Wei Duan, 2021. "Matrix-Based Formulation of Heterogeneous Individual-Based Models of Infectious Diseases: Using SARS Epidemic as a Case Study," IJERPH, MDPI, vol. 18(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4543-4548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.