On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.126993
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tan, W. Y., 1986. "A stochastic Gompertz birth-death process," Statistics & Probability Letters, Elsevier, vol. 4(1), pages 25-28, January.
- Schwarz, Justus Arne & Selinka, Gregor & Stolletz, Raik, 2016. "Performance analysis of time-dependent queueing systems: Survey and classification," Omega, Elsevier, vol. 63(C), pages 170-189.
- Yu Gong & Yong-Hua Mao & Chi Zhang, 2012. "Hitting Time Distributions for Denumerable Birth and Death Processes," Journal of Theoretical Probability, Springer, vol. 25(4), pages 950-980, December.
- Antonio Crescenzo & Virginia Giorno & Balasubramanian Krishna Kumar & Amelia G. Nobile, 2012. "A Double-ended Queue with Catastrophes and Repairs, and a Jump-diffusion Approximation," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 937-954, December.
- Zeifman, Alexander, 2021. "Bounds on the rate of convergence for Markovian queuing models with catastrophes," Statistics & Probability Letters, Elsevier, vol. 176(C).
- Antonio Di Crescenzo & Virginia Giorno & Balasubramanian Krishna Kumar & Amelia G. Nobile, 2018. "A Time-Non-Homogeneous Double-Ended Queue with Failures and Repairs and Its Continuous Approximation," Mathematics, MDPI, vol. 6(5), pages 1-23, May.
- Yacov Satin & Alexander Zeifman & Anastasia Kryukova, 2019. "On the Rate of Convergence and Limiting Characteristics for a Nonstationary Queueing Model," Mathematics, MDPI, vol. 7(8), pages 1-11, July.
- Virginia Giorno & Amelia G. Nobile, 2020. "Bell Polynomial Approach for Time-Inhomogeneous Linear Birth–Death Process with Immigration," Mathematics, MDPI, vol. 8(7), pages 1-29, July.
- Economou, Antonis & Fakinos, Demetrios, 2003. "A continuous-time Markov chain under the influence of a regulating point process and applications in stochastic models with catastrophes," European Journal of Operational Research, Elsevier, vol. 149(3), pages 625-640, September.
- Erik A. Doorn, 2017. "An Orthogonal-Polynomial Approach to First-Hitting Times of Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 30(2), pages 594-607, June.
- Hidetoshi Konno, 2010. "On the Exact Solution of a Generalized Polya Process," Advances in Mathematical Physics, Hindawi, vol. 2010, pages 1-12, November.
- T. Collings & C. Stoneman, 1976. "The M / M /∞ Queue with Varying Arrival and Departure Rates," Operations Research, INFORMS, vol. 24(4), pages 760-773, August.
- Giorno, Virginia & Nobile, Amelia G., 2020. "On a class of birth-death processes with time-varying intensity functions," Applied Mathematics and Computation, Elsevier, vol. 379(C).
- Oualid Jouini & Yves Dallery, 2008. "Moments of first passage times in general birth–death processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 49-76, August.
- Di Crescenzo, Antonio & Giorno, Virginia & Nobile, Amelia G., 2016. "Constructing transient birth–death processes by means of suitable transformations," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 152-171.
- Crawford, Forrest W. & Stutz, Timothy C. & Lange, Kenneth, 2016. "Coupling bounds for approximating birth–death processes by truncation," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 30-38.
- James Dong & Ward Whitt, 2015. "Using a birth‐and‐death process to estimate the steady‐state distribution of a periodic queue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(8), pages 664-685, December.
- Masuda, Yasushi, 1988. "First passage times of birth-death processes and simple random walks," Stochastic Processes and their Applications, Elsevier, vol. 29(1), pages 51-63.
- Román, P. & Serrano, J.J. & Torres, F., 2008. "First-passage-time location function: Application to determine first-passage-time densities in diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 4132-4146, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Virginia Giorno & Amelia G. Nobile, 2023. "Time-Inhomogeneous Finite Birth Processes with Applications in Epidemic Models," Mathematics, MDPI, vol. 11(21), pages 1-31, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Virginia Giorno & Amelia G. Nobile, 2020. "Bell Polynomial Approach for Time-Inhomogeneous Linear Birth–Death Process with Immigration," Mathematics, MDPI, vol. 8(7), pages 1-29, July.
- Giorno, Virginia & Nobile, Amelia G., 2020. "On a class of birth-death processes with time-varying intensity functions," Applied Mathematics and Computation, Elsevier, vol. 379(C).
- Antonio Di Crescenzo & Virginia Giorno & Balasubramanian Krishna Kumar & Amelia G. Nobile, 2018. "A Time-Non-Homogeneous Double-Ended Queue with Failures and Repairs and Its Continuous Approximation," Mathematics, MDPI, vol. 6(5), pages 1-23, May.
- Zeifman, A. & Satin, Y. & Kiseleva, K. & Korolev, V. & Panfilova, T., 2019. "On limiting characteristics for a non-stationary two-processor heterogeneous system," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 48-65.
- Di Crescenzo, Antonio & Giorno, Virginia & Nobile, Amelia G., 2016. "Constructing transient birth–death processes by means of suitable transformations," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 152-171.
- Heng-Li Liu & Quan-Lin Li, 2023. "Matched Queues with Flexible and Impatient Customers," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
- Giorno, Virginia & Nobile, Amelia G., 2023. "On a time-inhomogeneous diffusion process with discontinuous drift," Applied Mathematics and Computation, Elsevier, vol. 451(C).
- Guillaume Copros, 2018. "Existence Condition of Strong Stationary Times for Continuous Time Markov Chains on Discrete Graphs," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1679-1728, September.
- Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
- Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On Properties of the Phase-type Mixed Poisson Process and its Applications to Reliability Shock Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2933-2960, December.
- Lina Bian & Bo Peng & Yong Ye, 2023. "Reliability Analysis and Optimal Replacement Policy for Systems with Generalized Pólya Censored δ Shock Model," Mathematics, MDPI, vol. 11(21), pages 1-19, November.
- Junping Li, 2024. "Birth–Death Processes with Two-Type Catastrophes," Mathematics, MDPI, vol. 12(10), pages 1-17, May.
- Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
- Antonis Economou & Athanasia Manou, 2013. "Equilibrium balking strategies for a clearing queueing system in alternating environment," Annals of Operations Research, Springer, vol. 208(1), pages 489-514, September.
- Yacov Satin & Rostislav Razumchik & Ivan Kovalev & Alexander Zeifman, 2023. "Ergodicity and Related Bounds for One Particular Class of Markovian Time—Varying Queues with Heterogeneous Servers and Customer’s Impatience," Mathematics, MDPI, vol. 11(9), pages 1-15, April.
- Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander & Stidsen, Thomas Riis, 2019. "Staff optimization for time-dependent acute patient flow," European Journal of Operational Research, Elsevier, vol. 272(1), pages 94-105.
- Antonio Barrera & Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2021. "Two Multi-Sigmoidal Diffusion Models for the Study of the Evolution of the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(19), pages 1-29, September.
- F. P. Barbhuiya & Nitin Kumar & U. C. Gupta, 2019. "Batch Renewal Arrival Process Subject to Geometric Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 69-83, March.
- Di Crescenzo, A. & Giorno, V. & Nobile, A.G. & Ricciardi, L.M., 2008. "A note on birth-death processes with catastrophes," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2248-2257, October.
- Harris, K.R. & Trappeniers, N.J., 1980. "The density dependence of the self-diffusion coefficient of liquid methane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 104(1), pages 262-280.
More about this item
Keywords
First-passage time; Polya process; Gompertz process; M(t)/M(t)/1 Queue; M(t)/M(t)/∞ Queue; Computational algorithms;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000790. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.