Analytic expression of the probability density function for the first-passage time in birth-death processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.115307
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Attila Becskei & Luis Serrano, 2000. "Engineering stability in gene networks by autoregulation," Nature, Nature, vol. 405(6786), pages 590-593, June.
- Giorno, Virginia & Nobile, Amelia G., 2020. "On a class of birth-death processes with time-varying intensity functions," Applied Mathematics and Computation, Elsevier, vol. 379(C).
- Palacios, JoséLuis & Tetali, Prasad, 1996. "A note on expected hitting times for birth and death chains," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 119-125, October.
- Seong Jun Park & Sanggeun Song & Gil-Suk Yang & Philip M. Kim & Sangwoon Yoon & Ji-Hyun Kim & Jaeyoung Sung, 2018. "The Chemical Fluctuation Theorem governing gene expression," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
- Aleksejus Kononovicius & Vygintas Gontis, 2019. "Approximation of the first passage time distribution for the birth-death processes," Papers 1902.00924, arXiv.org.
- Masuda, Yasushi, 1988. "First passage times of birth-death processes and simple random walks," Stochastic Processes and their Applications, Elsevier, vol. 29(1), pages 51-63.
- Joel E Cohen, 2004. "Mathematics Is Biology's Next Microscope, Only Better; Biology Is Mathematics' Next Physics, Only Better," PLOS Biology, Public Library of Science, vol. 2(12), pages 1-1, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giorno, Virginia & Nobile, Amelia G., 2022. "On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes," Applied Mathematics and Computation, Elsevier, vol. 422(C).
- Kyung H Kim & Herbert M Sauro, 2012. "Adjusting Phenotypes by Noise Control," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-14, January.
- Elisa Setten & Alessandra Castagna & Josué Manik Nava-Sedeño & Jonathan Weber & Roberta Carriero & Andreas Reppas & Valery Volk & Jessica Schmitz & Wilfried Gwinner & Haralampos Hatzikirou & Friedrich, 2022. "Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
- Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
- Gentian Buzi & Mustafa Khammash, 2016. "Implementation Considerations, Not Topological Differences, Are the Main Determinants of Noise Suppression Properties in Feedback and Incoherent Feedforward Circuits," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-16, June.
- James R. Carey, 2008. "Biodemography: Research prospects and directions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(50), pages 1749-1758.
- José Luis Palacios & Daniel Quiroz, 2016. "Birth and Death Chains on Finite Trees: Computing their Stationary Distribution and Hitting Times," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 487-498, June.
- Cazelles, Bernard & Chavez, Mario & Courbage, Maurice, 2012. "Editorial," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 1-1.
- Haiyan, Chen & Fuji, Zhang, 2004. "The expected hitting times for graphs with cutpoints," Statistics & Probability Letters, Elsevier, vol. 66(1), pages 9-17, January.
- Alex J. H. Fedorec & Neythen J. Treloar & Ke Yan Wen & Linda Dekker & Qing Hsuan Ong & Gabija Jurkeviciute & Enbo Lyu & Jack W. Rutter & Kathleen J. Y. Zhang & Luca Rosa & Alexey Zaikin & Chris P. Bar, 2024. "Emergent digital bio-computation through spatial diffusion and engineered bacteria," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Luca Cardelli & Rosa D Hernansaiz-Ballesteros & Neil Dalchau & Attila Csikász-Nagy, 2017. "Efficient Switches in Biology and Computer Science," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
- Mu Niu & Benn Macdonald & Simon Rogers & Maurizio Filippone & Dirk Husmeier, 2018. "Statistical inference in mechanistic models: time warping for improved gradient matching," Computational Statistics, Springer, vol. 33(2), pages 1091-1123, June.
- Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
- Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
- Theinmozhi Arulraj & Debashis Barik, 2018. "Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-23, October.
- Xiaohong Li & Patricia L Blount & Thomas L Vaughan & Brian J Reid, 2011. "Application of Biomarkers in Cancer Risk Management: Evaluation from Stochastic Clonal Evolutionary and Dynamic System Optimization Points of View," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-7, February.
- Satin, Y.A. & Razumchik, R.V. & Zeifman, A.I. & Kovalev, I.A., 2022. "Upper bound on the rate of convergence and truncation bound for non-homogeneous birth and death processes on Z," Applied Mathematics and Computation, Elsevier, vol. 423(C).
- Karl P. Gerhardt & Satyajit D. Rao & Evan J. Olson & Oleg A. Igoshin & Jeffrey J. Tabor, 2021. "Independent control of mean and noise by convolution of gene expression distributions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Tina Toni & Bruce Tidor, 2013. "Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-17, March.
More about this item
Keywords
First-passage time; Birth-death process; System size; Population; Rate fluctuations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008592. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.