IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v14y2012i4d10.1007_s11009-011-9214-2.html
   My bibliography  Save this article

A Double-ended Queue with Catastrophes and Repairs, and a Jump-diffusion Approximation

Author

Listed:
  • Antonio Crescenzo

    (Università di Salerno)

  • Virginia Giorno

    (Università di Salerno)

  • Balasubramanian Krishna Kumar

    (Anna University)

  • Amelia G. Nobile

    (Università di Salerno)

Abstract

Consider a system performing a continuous-time random walk on the integers, subject to catastrophes occurring at constant rate, and followed by exponentially-distributed repair times. After any repair the system starts anew from state zero. We study both the transient and steady-state probability laws of the stochastic process that describes the state of the system. We then derive a heavy-traffic approximation to the model that yields a jump-diffusion process. The latter is equivalent to a Wiener process subject to randomly occurring jumps, whose probability law is obtained. The goodness of the approximation is finally discussed.

Suggested Citation

  • Antonio Crescenzo & Virginia Giorno & Balasubramanian Krishna Kumar & Amelia G. Nobile, 2012. "A Double-ended Queue with Catastrophes and Repairs, and a Jump-diffusion Approximation," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 937-954, December.
  • Handle: RePEc:spr:metcap:v:14:y:2012:i:4:d:10.1007_s11009-011-9214-2
    DOI: 10.1007/s11009-011-9214-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-011-9214-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-011-9214-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Randall J. Swift, 2001. "Transient probabilities for a simple birth-death-immigration process under the influence of total catastrophes," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 25, pages 1-4, January.
    2. Economou, Antonis & Fakinos, Demetrios, 2003. "A continuous-time Markov chain under the influence of a regulating point process and applications in stochastic models with catastrophes," European Journal of Operational Research, Elsevier, vol. 149(3), pages 625-640, September.
    3. Di Crescenzo, A. & Giorno, V. & Nobile, A.G. & Ricciardi, L.M., 2008. "A note on birth-death processes with catastrophes," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2248-2257, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virginia Giorno & Amelia G. Nobile, 2020. "Bell Polynomial Approach for Time-Inhomogeneous Linear Birth–Death Process with Immigration," Mathematics, MDPI, vol. 8(7), pages 1-29, July.
    2. Heng-Li Liu & Quan-Lin Li, 2023. "Matched Queues with Flexible and Impatient Customers," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    3. Di Crescenzo, Antonio & Giorno, Virginia & Nobile, Amelia G., 2016. "Constructing transient birth–death processes by means of suitable transformations," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 152-171.
    4. Antonio Di Crescenzo & Virginia Giorno & Balasubramanian Krishna Kumar & Amelia G. Nobile, 2018. "A Time-Non-Homogeneous Double-Ended Queue with Failures and Repairs and Its Continuous Approximation," Mathematics, MDPI, vol. 6(5), pages 1-23, May.
    5. Shi, Ying & Lian, Zhaotong, 2016. "Optimization and strategic behavior in a passenger–taxi service system," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1024-1032.
    6. Giorno, Virginia & Nobile, Amelia G., 2022. "On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    7. Giorno, Virginia & Nobile, Amelia G., 2020. "On a class of birth-death processes with time-varying intensity functions," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    8. Chai, Xudong & Liu, Liwei & Chang, Baoxian & Jiang, Tao & Wang, Zhen, 2019. "On a batch matching system with impatient servers and boundedly rational customers," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 308-328.
    9. Ying Shi & Zhaotong Lian, 2016. "Equilibrium Strategies and Optimal Control for a Double-Ended Queue," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-18, June.
    10. Hung Q. Nguyen & Tuan Phung-Duc, 2022. "Strategic customer behavior and optimal policies in a passenger–taxi double-ended queueing system with multiple access points and nonzero matching times," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 481-508, December.
    11. Virginia Giorno & Amelia G. Nobile, 2021. "Time-Inhomogeneous Feller-Type Diffusion Process in Population Dynamics," Mathematics, MDPI, vol. 9(16), pages 1-29, August.
    12. Anna Sinitcina & Yacov Satin & Alexander Zeifman & Galina Shilova & Alexander Sipin & Ksenia Kiseleva & Tatyana Panfilova & Anastasia Kryukova & Irina Gudkova & Elena Fokicheva, 2018. "On the Bounds for a Two-Dimensional Birth-Death Process with Catastrophes," Mathematics, MDPI, vol. 6(5), pages 1-17, May.
    13. Legros, Benjamin & Fransoo, Jan & Jouini, Oualid, 2024. "How to optimize container withholding decisions for reuse in the hinterland?," European Journal of Operational Research, Elsevier, vol. 316(3), pages 930-941.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junping Li, 2024. "Birth–Death Processes with Two-Type Catastrophes," Mathematics, MDPI, vol. 12(10), pages 1-17, May.
    2. Di Crescenzo, Antonio & Giorno, Virginia & Nobile, Amelia G., 2016. "Constructing transient birth–death processes by means of suitable transformations," Applied Mathematics and Computation, Elsevier, vol. 281(C), pages 152-171.
    3. Antonio Di Crescenzo & Virginia Giorno & Balasubramanian Krishna Kumar & Amelia G. Nobile, 2018. "A Time-Non-Homogeneous Double-Ended Queue with Failures and Repairs and Its Continuous Approximation," Mathematics, MDPI, vol. 6(5), pages 1-23, May.
    4. Vijay Rajan Lumb & Indra Rani, 2022. "Analytically simple solution to discrete-time queue with catastrophes, balking and state-dependent service," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 783-817, April.
    5. Nitin Kumar & Umesh Chandra Gupta, 2022. "Markovian Arrival Process Subject to Renewal Generated Binomial Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2287-2312, December.
    6. Thierry E. Huillet, 2024. "On the Balance between Emigration and Immigration as Random Walks on Non-Negative Integers," Mathematics, MDPI, vol. 12(20), pages 1-21, October.
    7. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    8. Antonis Economou & Athanasia Manou, 2013. "Equilibrium balking strategies for a clearing queueing system in alternating environment," Annals of Operations Research, Springer, vol. 208(1), pages 489-514, September.
    9. Feray Tunçalp & Lerzan Örmeci & Evrim D. Güneş, 2024. "Capacity allocation in a two-channel service system from a social planner’s perspective," Queueing Systems: Theory and Applications, Springer, vol. 108(1), pages 185-213, October.
    10. F. P. Barbhuiya & Nitin Kumar & U. C. Gupta, 2019. "Batch Renewal Arrival Process Subject to Geometric Catastrophes," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 69-83, March.
    11. Di Crescenzo, A. & Giorno, V. & Nobile, A.G. & Ricciardi, L.M., 2008. "A note on birth-death processes with catastrophes," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2248-2257, October.
    12. Román Zapién-Campos & Michael Sieber & Arne Traulsen, 2020. "Stochastic colonization of hosts with a finite lifespan can drive individual host microbes out of equilibrium," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-20, November.
    13. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    14. Zeifman, Alexander, 2021. "Bounds on the rate of convergence for Markovian queuing models with catastrophes," Statistics & Probability Letters, Elsevier, vol. 176(C).
    15. Giorno, Virginia & Nobile, Amelia G., 2022. "On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    16. Nitin Kumar & U. C. Gupta, 2020. "Analysis of batch Bernoulli process subject to discrete-time renewal generated binomial catastrophes," Annals of Operations Research, Springer, vol. 287(1), pages 257-283, April.
    17. Ye Jingjing & Liu Liwei & Jiang Tao, 2016. "Analysis of a Single-Sever Queue with Disasters and Repairs Under Bernoulli Vacation Schedule," Journal of Systems Science and Information, De Gruyter, vol. 4(6), pages 547-559, December.
    18. Spiros Dimou & Antonis Economou, 2013. "The Single Server Queue with Catastrophes and Geometric Reneging," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 595-621, September.
    19. Zhang Xiaoyan & Liu Liwei & Jiang Tao, 2015. "Analysis of an M/G/1 Stochastic Clearing Queue in a 3-Phase Environment," Journal of Systems Science and Information, De Gruyter, vol. 3(4), pages 374-384, August.
    20. Anna Sinitcina & Yacov Satin & Alexander Zeifman & Galina Shilova & Alexander Sipin & Ksenia Kiseleva & Tatyana Panfilova & Anastasia Kryukova & Irina Gudkova & Elena Fokicheva, 2018. "On the Bounds for a Two-Dimensional Birth-Death Process with Catastrophes," Mathematics, MDPI, vol. 6(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:14:y:2012:i:4:d:10.1007_s11009-011-9214-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.