IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4521-d1272972.html
   My bibliography  Save this article

Time-Inhomogeneous Finite Birth Processes with Applications in Epidemic Models

Author

Listed:
  • Virginia Giorno

    (Dipartimento di Informatica, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
    These authors contributed equally to this work.)

  • Amelia G. Nobile

    (Dipartimento di Informatica, Università degli Studi di Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, Salerno, Italy
    These authors contributed equally to this work.)

Abstract

We consider the evolution of a finite population constituted by susceptible and infectious individuals and compare several time-inhomogeneous deterministic models with their stochastic counterpart based on finite birth processes. For these processes, we determine the explicit expressions of the transition probabilities and of the first-passage time densities. For time-homogeneous finite birth processes, the behavior of the mean and the variance of the first-passage time density is also analyzed. Moreover, the approximate duration until the entire population is infected is obtained for a large population size.

Suggested Citation

  • Virginia Giorno & Amelia G. Nobile, 2023. "Time-Inhomogeneous Finite Birth Processes with Applications in Epidemic Models," Mathematics, MDPI, vol. 11(21), pages 1-31, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4521-:d:1272972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giorno, Virginia & Nobile, Amelia G., 2022. "On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    2. M. J. Faddy & J. S. Fenlon, 1999. "Stochastic modelling of the invasion process of nematodes in fly larvae," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(1), pages 31-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bretó, Carles, 2012. "Time changes that result in multiple points in continuous-time Markov counting processes," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2229-2234.
    2. Bretó, Carles, 2014. "Trajectory composition of Poisson time changes and Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 91-98.
    3. I. Ricard & A. C. Davison, 2007. "Statistical inference for olfactometer data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 479-492, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4521-:d:1272972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.