IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v420y2022ics0096300321008110.html
   My bibliography  Save this article

Robust energy-to-peak filter design for a class of unstable polytopic systems with a macroeconomic application

Author

Listed:
  • Gyurkovics, Éva
  • Takács, Tibor

Abstract

This paper deals with the robust energy-to-peak filtering problem for linear continuous- and discrete-time systems with polytopic uncertainties. Motivated by a macroeconomic application, the notion of the robust energy-to-peak filter is extended to a class of unstable systems by making use of the results on stability with respect to noncompact sets. Parameter-dependent Lyapunov approach and Finsler’s lemma are used to establish sufficient conditions for the existence of energy-to-peak filter such that the error system is asymptotically stable with respect to a subspace and a prescribed energy-to-peak performance is guaranteed. The conditions are formulated in terms of linear matrix inequalities (LMIs). Two numerical examples modified from the literature are provided to demonstrate the effectiveness of the proposed method. The results are also successfully applied to the estimation of the so called potential GDP using real data.

Suggested Citation

  • Gyurkovics, Éva & Takács, Tibor, 2022. "Robust energy-to-peak filter design for a class of unstable polytopic systems with a macroeconomic application," Applied Mathematics and Computation, Elsevier, vol. 420(C).
  • Handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321008110
    DOI: 10.1016/j.amc.2021.126729
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321008110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arabinda Basistha, 2007. "Trend‐cycle correlation, drift break and the estimation of trend and cycle in Canadian GDP," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(2), pages 584-606, May.
    2. Kuttner, Kenneth N, 1994. "Estimating Potential Output as a Latent Variable," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 361-368, July.
    3. Enders, Walter & Li, Jing, 2015. "Trend-cycle decomposition allowing for multiple smooth structural changes in the trend of US real GDP," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 71-81.
    4. Guido Bulligan & Lorenzo Burlon & Davide Delle Monache & Andrea Silvestrini, 2019. "Real and financial cycles: estimates using unobserved component models for the Italian economy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 541-569, September.
    5. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    6. Aruoba, S. Borağan & Diebold, Francis X. & Nalewaik, Jeremy & Schorfheide, Frank & Song, Dongho, 2016. "Improving GDP measurement: A measurement-error perspective," Journal of Econometrics, Elsevier, vol. 191(2), pages 384-397.
    7. Tetsuya Konuki, 2010. "Estimating Potential Output and the Output Gap in Slovakia," Eastern European Economics, Taylor & Francis Journals, vol. 48(2), pages 39-55, March.
    8. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 797-814.
    9. Ms. Sweta Chaman Saxena & Ms. Valerie Cerra, 2000. "Alternative Methods of Estimating Potential Output and the Output Gap: An Application to Sweden," IMF Working Papers 2000/059, International Monetary Fund.
    10. Nicolas A. Cuche & Martin K. Hess, 1999. "Estimating Monthly GDP In A General Kalman Filter Framework: Evidence From Switzerland," Working Papers 99.02, Swiss National Bank, Study Center Gerzensee.
    11. Mohamed A. M. Sallam & Mohamed R. Neffati, 2019. "Estimation and Analysis of the Output Gap for the Saudi Economy; Econometric Study (1970-2016)," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(2), pages 267-284, February.
    12. Hicham El Aiss & Taha Zoulagh & Abdelaziz Hmamed & Ahmed El Hajjaji, 2019. "An input–output approach to reduced filter design for polytopic time-varying delay systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(1), pages 35-49, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Éva Gyurkovics & Tibor Takács, 2023. "Estimation of the potential GDP by a new robust filter method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1183-1207, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Éva Gyurkovics & Tibor Takács, 2023. "Estimation of the potential GDP by a new robust filter method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1183-1207, December.
    2. Tino Berger, 2011. "Estimating Europe’s natural rates," Empirical Economics, Springer, vol. 40(2), pages 521-536, April.
    3. Ángel Guillén & Gabriel Rodríguez, 2014. "Trend-cycle decomposition for Peruvian GDP: application of an alternative method," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 23(1), pages 1-44, December.
    4. James Morley & Irina B. Panovska & Tara M. Sinclair, 2013. "Testing Stationarity for Unobserved Components Models," Discussion Papers 2012-41A, School of Economics, The University of New South Wales.
    5. Manuel González-Astudillo & John M. Roberts, 2022. "When are trend–cycle decompositions of GDP reliable?," Empirical Economics, Springer, vol. 62(5), pages 2417-2460, May.
    6. Guérin, Pierre & Maurin, Laurent & Mohr, Matthias, 2015. "Trend-Cycle Decomposition Of Output And Euro Area Inflation Forecasts: A Real-Time Approach Based On Model Combination," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 363-393, March.
    7. Arabinda Basistha & Richard Startz, 2004. "Measuring the NAIRU with Reduced Uncertainty: A Multiple Indicator-Common Component Approach," Working Papers UWEC-2004-22, University of Washington, Department of Economics.
    8. Enders, Walter & Li, Jing, 2015. "Trend-cycle decomposition allowing for multiple smooth structural changes in the trend of US real GDP," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 71-81.
    9. Marian Vavra, 2016. "Testing the Validity of Assumptions of UC-ARIMA Models for Trend-Cycle Decompositions," Working and Discussion Papers WP 4/2016, Research Department, National Bank of Slovakia.
    10. Blonigen, Bruce A. & Piger, Jeremy & Sly, Nicholas, 2014. "Comovement in GDP trends and cycles among trading partners," Journal of International Economics, Elsevier, vol. 94(2), pages 239-247.
    11. Castillo, Luis & Florián, David, 2019. "Measuring the output gap, potential output growth and natural interest rate from a semi-structural dynamic model for Peru," Working Papers 2019-012, Banco Central de Reserva del Perú.
    12. Kiley, Michael T., 2013. "Output gaps," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 1-18.
    13. Melolinna, Marko & Tóth, Máté, 2019. "Trend and cycle shocks in Bayesian unobserved components models for UK productivity," Bank of England working papers 826, Bank of England.
    14. Han, Yang & Liu, Zehao & Ma, Jun, 2020. "Growth cycles and business cycles of the Chinese economy through the lens of the unobserved components model," China Economic Review, Elsevier, vol. 63(C).
    15. Daisuke Nagakura, 2008. "How Are Shocks to Trend and Cycle Correlated? A Simple Methodology for Unidentified Unobserved Components Models," IMES Discussion Paper Series 08-E-24, Institute for Monetary and Economic Studies, Bank of Japan.
    16. Angelia L. Grant & Joshua C.C. Chan, 2017. "A Bayesian Model Comparison for Trend‐Cycle Decompositions of Output," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(2-3), pages 525-552, March.
    17. Buncic, Daniel, 2020. "Econometric issues with Laubach and Williams’ estimates of the natural rate of interest," Working Paper Series 397, Sveriges Riksbank (Central Bank of Sweden).
    18. Cayen, Jean-Philippe & van Norden, Simon, 2005. "The reliability of Canadian output-gap estimates," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 373-393, December.
    19. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    20. Max Soloschenko & Enzo Weber, 2021. "Trend-Cycle Interactions and the Subprime Crisis: Analysis of US and Canadian Output," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 109-128, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321008110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.