IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v417y2022ics0096300321008614.html
   My bibliography  Save this article

Transient Analysis of Differentiated Breakdown Model

Author

Listed:
  • Janani, B.

Abstract

The single server queueing system is investigated. When the system is idle or while serving a customer, it fails at random. System failure is classified into two types: hard failure and soft failure. Hard failure usually necessitates the repairman's physical presence and takes a long time. Soft failure, on the other hand, takes less time because the system can be restored to operation by simply rebooting it. When the system is being repaired, the server is forced to take a vacation and the repair process begins immediately. The model's transient state probabilities are derived and using the final value theorem of the Laplace transform, steady state probabilities are derived from transient state probabilities. Finally, numerical illustrations are provided to demonstrate the system's behaviour as the parameters' values are varied.

Suggested Citation

  • Janani, B., 2022. "Transient Analysis of Differentiated Breakdown Model," Applied Mathematics and Computation, Elsevier, vol. 417(C).
  • Handle: RePEc:eee:apmaco:v:417:y:2022:i:c:s0096300321008614
    DOI: 10.1016/j.amc.2021.126779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321008614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yonatan Levy & Uri Yechiali, 1975. "Utilization of Idle Time in an M/G/1 Queueing System," Management Science, INFORMS, vol. 22(2), pages 202-211, October.
    2. Lizheng Guo & Tao Yan & Shuguang Zhao & Changyuan Jiang, 2014. "Dynamic Performance Optimization for Cloud Computing Using M/M/m Queueing System," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-8, March.
    3. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4, December.
    4. Oliver C. Ibe, 2016. "Vacation Queueing Models of Service Systems Subject to Failure and Repair," Springer Series in Reliability Engineering, in: Lance Fiondella & Antonio Puliafito (ed.), Principles of Performance and Reliability Modeling and Evaluation, pages 481-496, Springer.
    5. Naishuo Tian & Zhe George Zhang, 2006. "Applications of Vacation Models," International Series in Operations Research & Management Science, in: Vacation Queueing Models Theory and Applications, chapter 0, pages 343-358, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mingjia & Hu, Linmin & Wu, Shaomin & Zhao, Bing & Wang, Yan, 2023. "Reliability assessment for consecutive-k-out-of-n: F retrial systems under Poisson shocks," Applied Mathematics and Computation, Elsevier, vol. 448(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    2. Achyutha Krishnamoorthy & Anu Nuthan Joshua & Dmitry Kozyrev, 2021. "Analysis of a Batch Arrival, Batch Service Queuing-Inventory System with Processing of Inventory While on Vacation," Mathematics, MDPI, vol. 9(4), pages 1-29, February.
    3. M. I. G. Suranga Sampath & K. Kalidass & Jicheng Liu, 2020. "Transient Analysis of an M/M/1 Queueing System Subjected to Multiple Differentiated Vacations, Impatient Customers and a Waiting Server with Application to IEEE 802.16E Power Saving Mechanism," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 297-320, March.
    4. G. K. Tamrakar & A. Banerjee, 2020. "On steady-state joint distribution of an infinite buffer batch service Poisson queue with single and multiple vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1337-1373, December.
    5. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    6. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    7. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.
    8. Srinivas R. Chakravarthy & Serife Ozkar, 2016. "Crowdsourcing and Stochastic Modeling," Business and Management Research, Business and Management Research, Sciedu Press, vol. 5(2), pages 19-30, June.
    9. Zsolt Saffer & Sergey Andreev & Yevgeni Koucheryavy, 2016. "$$M/D^{[y]}/1$$ M / D [ y ] / 1 Periodically gated vacation model and its application to IEEE 802.16 network," Annals of Operations Research, Springer, vol. 239(2), pages 497-520, April.
    10. Shunfu Jin & Xiuchen Qie & Wenjuan Zhao & Wuyi Yue & Yutaka Takahashi, 2020. "A clustered virtual machine allocation strategy based on a sleep-mode with wake-up threshold in a cloud environment," Annals of Operations Research, Springer, vol. 293(1), pages 193-212, October.
    11. Amina Angelika Bouchentouf & Abdelhak Guendouzi, 2021. "Single Server Batch Arrival Bernoulli Feedback Queueing System with Waiting Server, K-Variant Vacations and Impatient Customers," SN Operations Research Forum, Springer, vol. 2(1), pages 1-23, March.
    12. F. P. Barbhuiya & U. C. Gupta, 2020. "A Discrete-Time GIX/Geo/1 Queue with Multiple Working Vacations Under Late and Early Arrival System," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 599-624, June.
    13. Alexander Dudin & Sergei Dudin & Valentina Klimenok & Yuliya Gaidamaka, 2021. "Vacation Queueing Model for Performance Evaluation of Multiple Access Information Transmission Systems without Transmission Interruption," Mathematics, MDPI, vol. 9(13), pages 1-15, June.
    14. Chakravarthy, Srinivas R. & Shruti, & Kulshrestha, Rakhee, 2020. "A queueing model with server breakdowns, repairs, vacations, and backup server," Operations Research Perspectives, Elsevier, vol. 7(C).
    15. Kumar, Anshul & Jain, Madhu, 2023. "Cost Optimization of an Unreliable server queue with two stage service process under hybrid vacation policy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 259-281.
    16. Igor Kleiner & Esther Frostig & David Perry, 2023. "Busy Periods for Queues Alternating Between Two Modes," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-16, June.
    17. Tuan Phung-Duc, 2017. "Exact solutions for M/M/c/Setup queues," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(2), pages 309-324, February.
    18. Oz, Binyamin & Adan, Ivo & Haviv, Moshe, 2019. "The Mn/Gn/1 queue with vacations and exhaustive service," European Journal of Operational Research, Elsevier, vol. 277(3), pages 945-952.
    19. Meena, Rakesh Kumar & Jain, Madhu & Sanga, Sudeep Singh & Assad, Assif, 2019. "Fuzzy modeling and harmony search optimization for machining system with general repair, standby support and vacation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 858-873.
    20. B. Krishna Kumar & R. Rukmani & A. Thanikachalam & V. Kanakasabapathi, 2018. "Performance analysis of retrial queue with server subject to two types of breakdowns and repairs," Operational Research, Springer, vol. 18(2), pages 521-559, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:417:y:2022:i:c:s0096300321008614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.