IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v479y2024ics0096300324003175.html
   My bibliography  Save this article

Modelling and analysis of production management system using vacation queueing theoretic approach

Author

Listed:
  • Ambika, K.
  • Vijayashree, K.V.
  • Janani, B.

Abstract

This paper explores a queueing model in a production management context, featuring periods of working vacations and Bernoulli vacation. When there are no pending orders, the manufacturing unit transits into a maintenance phase, also termed as working vacation, during which production continues, albeit at a slower rate. This diminished productivity could result in longer lead times and potential customer dissatisfaction. Depending on the influx of demand, the maintenance phase could be interrupted, propelling the unit back to full operational capacity. Conversely, if no orders are received during the maintenance phase, the unit has the choice of switching to standby mode in anticipation of incoming orders, or initiating an extended break. We utilize mathematical techniques such as continued fractions, Modified Bessel functions, and Laplace transforms to precisely compute the transient state probabilities of this model. To further illustrate the impact of these operational dynamics on production management, we present corroborative numerical examples.

Suggested Citation

  • Ambika, K. & Vijayashree, K.V. & Janani, B., 2024. "Modelling and analysis of production management system using vacation queueing theoretic approach," Applied Mathematics and Computation, Elsevier, vol. 479(C).
  • Handle: RePEc:eee:apmaco:v:479:y:2024:i:c:s0096300324003175
    DOI: 10.1016/j.amc.2024.128856
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324003175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janani, B., 2022. "Transient Analysis of Differentiated Breakdown Model," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    2. Yonatan Levy & Uri Yechiali, 1975. "Utilization of Idle Time in an M/G/1 Queueing System," Management Science, INFORMS, vol. 22(2), pages 202-211, October.
    3. Naishuo Tian & Zhe George Zhang, 2006. "Vacation Queueing Models Theory and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-33723-4.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madhu Jain & Sandeep Kaur & Parminder Singh, 2021. "Supplementary variable technique (SVT) for non-Markovian single server queue with service interruption (QSI)," Operational Research, Springer, vol. 21(4), pages 2203-2246, December.
    2. Achyutha Krishnamoorthy & Anu Nuthan Joshua & Dmitry Kozyrev, 2021. "Analysis of a Batch Arrival, Batch Service Queuing-Inventory System with Processing of Inventory While on Vacation," Mathematics, MDPI, vol. 9(4), pages 1-29, February.
    3. M. I. G. Suranga Sampath & K. Kalidass & Jicheng Liu, 2020. "Transient Analysis of an M/M/1 Queueing System Subjected to Multiple Differentiated Vacations, Impatient Customers and a Waiting Server with Application to IEEE 802.16E Power Saving Mechanism," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 297-320, March.
    4. Ramachandran Remya & Amina Angelika Bouchentouf & Kaliappan Kalidass, 2024. "Cost optimization of a M/M/1/WV&MAV queueing system using Newton–Raphson and particle swarm optimization techniques," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 205-220.
    5. Janani, B., 2022. "Transient Analysis of Differentiated Breakdown Model," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    6. G. K. Tamrakar & A. Banerjee, 2020. "On steady-state joint distribution of an infinite buffer batch service Poisson queue with single and multiple vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1337-1373, December.
    7. Gabi Hanukov & Uri Yechiali, 2024. "Orbit while in service," Operational Research, Springer, vol. 24(2), pages 1-32, June.
    8. Jennifer Sommer & Joost Berkhout & Hans Daduna & Bernd Heidergott, 2017. "Analysis of Jackson networks with infinite supply and unreliable nodes," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 181-207, October.
    9. Venugopal Karthick & Vaidhiyanathan Suvitha & Ramupillai Sudhesh, 2024. "Transient analysis of two heterogeneous servers queueing system with differentiated vacations subject to system disaster, server repair," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 751-776, November.
    10. B. Krishna Kumar & S. Pavai Madheswari & S. Anantha Lakshmi, 2011. "Queuing system with state-dependent controlled batch arrivals and server under maintenance," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 351-379, December.
    11. Sem Borst & Onno Boxma, 2018. "Polling: past, present, and perspective," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 335-369, October.
    12. Priyanka Kalita & Gautam Choudhury & Dharmaraja Selvamuthu, 2020. "Analysis of Single Server Queue with Modified Vacation Policy," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 511-553, June.
    13. Manickam Vadivukarasi & Kaliappan Kalidass, 2021. "Discussion on the transient behavior of single server Markovian multiple variant vacation queues," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 123-146.
    14. Delasay, Mohammad & Ingolfsson, Armann & Kolfal, Bora & Schultz, Kenneth, 2019. "Load effect on service times," European Journal of Operational Research, Elsevier, vol. 279(3), pages 673-686.
    15. Li, Mingjia & Hu, Linmin & Wu, Shaomin & Zhao, Bing & Wang, Yan, 2023. "Reliability assessment for consecutive-k-out-of-n: F retrial systems under Poisson shocks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    16. Yuying Zhang & Dequan Yue & Wuyi Yue, 2022. "A queueing-inventory system with random order size policy and server vacations," Annals of Operations Research, Springer, vol. 310(2), pages 595-620, March.
    17. Houyuan Jiang & Zhan Pang & Sergei Savin, 2012. "Performance-Based Contracts for Outpatient Medical Services," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 654-669, October.
    18. Shan Gao & Zaiming Liu & Qiwen Du, 2014. "Discrete-Time Gix/Geo/1/N Queue With Working Vacations And Vacation Interruption," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(01), pages 1-22.
    19. Wee Meng Yeo & Xue-Ming Yuan & Joyce Mei Wan Low, 2017. "On $$M^{X}/G(M/H)/1$$ M X / G ( M / H ) / 1 retrial system with vacation: service helpline performance measurement," Annals of Operations Research, Springer, vol. 248(1), pages 553-578, January.
    20. Yi Peng & Jinbiao Wu, 2020. "A Lévy-Driven Stochastic Queueing System with Server Breakdowns and Vacations," Mathematics, MDPI, vol. 8(8), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:479:y:2024:i:c:s0096300324003175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.