IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v414y2022ics0096300321007530.html
   My bibliography  Save this article

Highly efficient Shannon wavelet-based pricing of power options under the double exponential jump framework with stochastic jump intensity and volatility

Author

Listed:
  • Huang, Chun-Sung
  • O'Hara, John G.
  • Mataramvura, Sure

Abstract

We propose a highly efficient and accurate valuation method for exotic-style options based on the novel Shannon wavelet inverse Fourier technique (SWIFT). Specifically, we derive an efficient pricing method for power options under a more realistic double exponential jump model with stochastic volatility and jump intensity. The inclusion of such innovations may accommodate for the various stylised facts observed in the prices of financial assets, and admits a more realistic pricing framework as a result. Following the derivation of our SWIFT pricing method for power options, we perform extensive numerical experiments to analyse both the method’s accuracy and efficiency. In addition, we investigate the sensitivities in the resulting prices, as well as the inherent errors, to changes in the underlying market conditions. Our numerical results demonstrate that the SWIFT method is not only more efficient when benchmarked to its closest competitors, such as the Fourier-cosine (COS) and the widely-acclaimed fast-Fourier transform (FFT) methods, but it is also robust across a range of different market conditions exhibiting exponential error convergence.

Suggested Citation

  • Huang, Chun-Sung & O'Hara, John G. & Mataramvura, Sure, 2022. "Highly efficient Shannon wavelet-based pricing of power options under the double exponential jump framework with stochastic jump intensity and volatility," Applied Mathematics and Computation, Elsevier, vol. 414(C).
  • Handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007530
    DOI: 10.1016/j.amc.2021.126669
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321007530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    3. Pedro Santa-Clara & Shu Yan, 2010. "Crashes, Volatility, and the Equity Premium: Lessons from S&P 500 Options," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 435-451, May.
    4. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    7. Wong, Hoi Ying & Lo, Yu Wai, 2009. "Option pricing with mean reversion and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 197(1), pages 179-187, August.
    8. Chang, Charles & Fuh, Cheng-Der & Lin, Shih-Kuei, 2013. "A tale of two regimes: Theory and empirical evidence for a Markov-modulated jump diffusion model of equity returns and derivative pricing implications," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3204-3217.
    9. Sumei Zhang & Junhao Geng, 2017. "Fourier-cosine method for pricing forward starting options with stochastic volatility and jumps," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(20), pages 9995-10004, October.
    10. Jiexiang Huang & Wenli Zhu & Xinfeng Ruan, 2013. "Fast Fourier Transform Based Power Option Pricing with Stochastic Interest Rate, Volatility, and Jump Intensity," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-7, November.
    11. Stefan Macovschi & François Quittard-Pinon, 2006. "On the Pricing of Power and Other Polynomial Options," Post-Print hal-02313166, HAL.
    12. G. Tour & N. Thakoor & A. Q. M. Khaliq & D. Y. Tangman, 2018. "COS method for option pricing under a regime-switching model with time-changed Lévy processes," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 673-692, April.
    13. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    14. Shoude Huang & Xunxiang Guo, 2020. "A Fourier-Cosine Method for Pricing Discretely Monitored Barrier Options under Stochastic Volatility and Double Exponential Jump," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    2. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    3. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    5. Kaeck, Andreas, 2013. "Asymmetry in the jump-size distribution of the S&P 500: Evidence from equity and option markets," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1872-1888.
    6. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    7. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    8. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    9. Huang, Shoude & Guo, Xunxiang, 2022. "Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    11. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    12. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    13. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    14. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    15. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    16. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    17. Chen, Jian & Qi, Shuyuan, 2024. "Limit-hitting exciting effects: Modeling jump dependencies in stock markets adhering to daily price-limit rules," Journal of Banking & Finance, Elsevier, vol. 163(C).
    18. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    19. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    20. Muroi, Yoshifumi & Suda, Shintaro, 2022. "Binomial tree method for option pricing: Discrete cosine transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 312-331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.