IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i4p673-692.html
   My bibliography  Save this article

COS method for option pricing under a regime-switching model with time-changed Lévy processes

Author

Listed:
  • G. Tour
  • N. Thakoor
  • A. Q. M. Khaliq
  • D. Y. Tangman

Abstract

We extend the regime-switching model to the rich class of time-changed Lévy processes and use the Fourier cosine expansion (COS) method to price several options under the resulting models. The extension of the COS method to price under the regime-switching model is not straightforward because it requires the evaluation of the characteristic function which is based on a matrix exponentiation which is not an easy task. For a two-state economy, we give an analytical expression for computing this matrix exponential, and for more than two states, we use the Carathéodory–Fejér approximation to find the option prices efficiently. In the new framework developed here, it is possible to allow switches not only in the model parameters as is commonly done in literature, but we can also completely switch among various popular financial models under different regimes without any additional computational cost. Calibration of the different regime-switching models with real market data shows that the best models are the regime-switching time-changed Lévy models. As expected by the error analysis, the COS method converges exponentially and thus outperforms all other numerical methods that have been proposed so far.

Suggested Citation

  • G. Tour & N. Thakoor & A. Q. M. Khaliq & D. Y. Tangman, 2018. "COS method for option pricing under a regime-switching model with time-changed Lévy processes," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 673-692, April.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:4:p:673-692
    DOI: 10.1080/14697688.2017.1412494
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2017.1412494
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2017.1412494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaoyuan & Zhang, Tianqi, 2022. "Barrier option pricing under a Markov Regime switching diffusion model," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 273-280.
    2. Allan Jonathan da Silva & Jack Baczynski & José Valentim Machado Vicente, 2020. "Efficient Solutions for Pricing and Hedging Interest Rate Asian Options," Working Papers Series 513, Central Bank of Brazil, Research Department.
    3. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    4. Zhang, Xiaoyuan & Zhang, Tianqi, 2023. "On pricing double-barrier options with Markov regime switching," Finance Research Letters, Elsevier, vol. 51(C).
    5. Jing, Bo & Li, Shenghong & Ma, Yong, 2021. "Consistent pricing of VIX options with the Hawkes jump-diffusion model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    6. Castellano, Rosella & Corallo, Vincenzo & Morelli, Giacomo, 2022. "Structural estimation of counterparty credit risk under recovery risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    7. Yayun Wang, 2023. "Pricing a Specific Equity Index Annuity in a Regime-Switching Lévy Model with Jump," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1115-1135, March.
    8. Huang, Chun-Sung & O'Hara, John G. & Mataramvura, Sure, 2022. "Highly efficient Shannon wavelet-based pricing of power options under the double exponential jump framework with stochastic jump intensity and volatility," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    9. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:4:p:673-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.